Research on the characteristics of pore water distribution of calcium carbonate waste soil based on NMR tests

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2025-01-15 DOI:10.1007/s10064-024-04078-x
Jianxiao Gu, Haibo Lyu, Guoqiang Chen, Jiajia Wu, Yaoxingyu Chen
{"title":"Research on the characteristics of pore water distribution of calcium carbonate waste soil based on NMR tests","authors":"Jianxiao Gu,&nbsp;Haibo Lyu,&nbsp;Guoqiang Chen,&nbsp;Jiajia Wu,&nbsp;Yaoxingyu Chen","doi":"10.1007/s10064-024-04078-x","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding pore water distribution in soil is essential for elucidating water movement and mechanical properties, as it significantly influences soil strength and stability. Accurate assessment of this distribution provides a scientific foundation for civil engineering design, ensuring structural safety and durability. This study examines pore water distribution using plate load tests and Nuclear Magnetic Resonance (NMR). Results indicate that matric suction expels free water first, leaving bound water until a critical suction point is reached. As matric suction increases, the peak value of the T<sub>2</sub> relaxation time curve decreases, shifting leftward, reflecting water drainage from larger to smaller pores. Then, water expulsion occurs in three stages, with Stage III primarily indicating bound water content, quantified at 19.23%, including 3.3% as strongly bound water. An equation is derived to calculate the surface relaxation rate of 0.0176 μm/ms. Thus, the distribution of T<sub>2</sub> relaxation time can be transformed into pore size distribution, summarizing the characteristics of pore water distribution during the drying process. Finally, comparative analysis confirms the effectiveness of NMR in measuring bound water. These findings enhance our understanding of soil water distribution and highlight the need for advanced models that incorporate pore connectivity and water retention dynamics.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04078-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding pore water distribution in soil is essential for elucidating water movement and mechanical properties, as it significantly influences soil strength and stability. Accurate assessment of this distribution provides a scientific foundation for civil engineering design, ensuring structural safety and durability. This study examines pore water distribution using plate load tests and Nuclear Magnetic Resonance (NMR). Results indicate that matric suction expels free water first, leaving bound water until a critical suction point is reached. As matric suction increases, the peak value of the T2 relaxation time curve decreases, shifting leftward, reflecting water drainage from larger to smaller pores. Then, water expulsion occurs in three stages, with Stage III primarily indicating bound water content, quantified at 19.23%, including 3.3% as strongly bound water. An equation is derived to calculate the surface relaxation rate of 0.0176 μm/ms. Thus, the distribution of T2 relaxation time can be transformed into pore size distribution, summarizing the characteristics of pore water distribution during the drying process. Finally, comparative analysis confirms the effectiveness of NMR in measuring bound water. These findings enhance our understanding of soil water distribution and highlight the need for advanced models that incorporate pore connectivity and water retention dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Research on the characteristics of pore water distribution of calcium carbonate waste soil based on NMR tests Blasting response and stability evolution of high slope in open-pit mine subjected to rainfall infiltration Time-dependent longitudinal deformation profiles for circular tunnels in squeezing ground conditions: a Seri Nala case study Dispersion, mechanical, hydrophysical properties and mechanistic analysis of improved dispersive soil using guar gum Failure characteristics and energy properties of red sandstone under uniaxial compression: water content effect and its application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1