Density functional theory study of hydrogen and oxygen reactions on NiO(100) and Ce doped NiO(100)

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2025-01-15 DOI:10.1007/s00894-024-06275-7
Bingxing Yang, Rong Zhang, Yunjie Sun
{"title":"Density functional theory study of hydrogen and oxygen reactions on NiO(100) and Ce doped NiO(100)","authors":"Bingxing Yang,&nbsp;Rong Zhang,&nbsp;Yunjie Sun","doi":"10.1007/s00894-024-06275-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>This study aims to reveal the reaction mechanisms of H<sub>2</sub> and O<sub>2</sub> on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H<sub>2</sub> and O<sub>2</sub> react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases. Ce doping reduces this activation energy to 1.64 eV (compared to 3.16 eV for pure NiO(100)). The enhanced activity of lattice oxygen due to Ce doping is attributed to the charge transfer in the Ce–O bond, which leads to the electronic localization around O atoms and weakens the activation energy barrier. Moreover, the presence of Ce facilitates the formation of a sub-stable OH intermediate on the reduced surface, ensuring the sustainability of the reaction. This study provides a theoretical basis for the design of high-performance nickel-based hydrogen deoxidizers and contributes to promoting the research and development process of nickel-based catalysts in related fields.</p><h3>Methods</h3><p>The calculations were performed using the Vienna ab initio simulation package (VASP) module of the MedeA® software. The exchange–correlation energy calculations are performed using the Perdew, Burke and Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). The transition states were calculated using the MedeA® Transition State Search Module, based on the climbing-image nudged elastic band (CI-NEB) method.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06275-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

This study aims to reveal the reaction mechanisms of H2 and O2 on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H2 and O2 react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases. Ce doping reduces this activation energy to 1.64 eV (compared to 3.16 eV for pure NiO(100)). The enhanced activity of lattice oxygen due to Ce doping is attributed to the charge transfer in the Ce–O bond, which leads to the electronic localization around O atoms and weakens the activation energy barrier. Moreover, the presence of Ce facilitates the formation of a sub-stable OH intermediate on the reduced surface, ensuring the sustainability of the reaction. This study provides a theoretical basis for the design of high-performance nickel-based hydrogen deoxidizers and contributes to promoting the research and development process of nickel-based catalysts in related fields.

Methods

The calculations were performed using the Vienna ab initio simulation package (VASP) module of the MedeA® software. The exchange–correlation energy calculations are performed using the Perdew, Burke and Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). The transition states were calculated using the MedeA® Transition State Search Module, based on the climbing-image nudged elastic band (CI-NEB) method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
Density functional theory study of hydrogen and oxygen reactions on NiO(100) and Ce doped NiO(100) A comprehensive study of the influence of non-covalent interactions on electron density redistribution during the reaction between acetic acid and methylamine Molecular dynamic simulation study on the influence of heating rate on the thermal decomposition process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) Towards a unified fold-cusp model for bond polarity scaling: electron rearrangements in the pyrolytic isomerization of cubane to cyclooctatetraene Study on the modulation mechanism of the optoelectronic properties based on common electrode metal atom adsorption on graphene/MoTe2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1