Jingfeng Jiang, Mostafa Rezaeitaleshmahalleh, Jinshan Tang, Joseph Gemmette, Aditya Pandey
{"title":"Improving rupture status prediction for intracranial aneurysms using wall shear stress informatics","authors":"Jingfeng Jiang, Mostafa Rezaeitaleshmahalleh, Jinshan Tang, Joseph Gemmette, Aditya Pandey","doi":"10.1007/s00701-024-06404-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Wall shear stress (WSS) plays a crucial role in the natural history of intracranial aneurysms (IA). However, spatial variations among WSS have rarely been utilized to correlate with IAs’ natural history. This study aims to establish the feasibility of using spatial patterns of WSS data to predict IAs’ rupture status (i.e., ruptured versus unruptured).</p><h3>Methods</h3><p>“Patient-specific” computational fluid dynamics (CFD) simulations were performed for 112 IAs; each IA’s rupture status was known from medical records. Recall that CFD-simulated hemodynamics data (wall shear stress and its derivatives) are located on unstructured meshes. Hence, we mapped WSS data from an unstructured grid onto a unit disk (i.e., a uniformly sampled polar coordinate system); data in a uniformly sampled polar system is equivalent to image data. Mapped WSS data (onto the unit disk) were readily available for Radiomics analysis to extract spatial patterns of WSS data. We named this innovative technology “WSS-informatics” (i.e., using informatics techniques to analyze WSS data); the usefulness of WSS-informatics was demonstrated during the predictive modeling of IAs’ rupture status.</p><h3>Results</h3><p>None of the conventional WSS parameters correlated to IAs’ rupture status. However, WSS-informatics metrics were discriminative (<i>p</i>-value < 0.05) to IAs’ rupture status. Furthermore, predictive models with WSS-informatics features could significantly improve the prediction performance (area under the receiver operating characteristic curve [AUROC]: 0.78 vs. 0.85; <i>p</i>-value < 0.01).</p><h3>Conclusion</h3><p>The proposed innovations enabled the first study to use spatial patterns of WSS data to improve the predictive modeling of IAs’ rupture status.</p></div>","PeriodicalId":7370,"journal":{"name":"Acta Neurochirurgica","volume":"167 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00701-024-06404-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neurochirurgica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00701-024-06404-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Wall shear stress (WSS) plays a crucial role in the natural history of intracranial aneurysms (IA). However, spatial variations among WSS have rarely been utilized to correlate with IAs’ natural history. This study aims to establish the feasibility of using spatial patterns of WSS data to predict IAs’ rupture status (i.e., ruptured versus unruptured).
Methods
“Patient-specific” computational fluid dynamics (CFD) simulations were performed for 112 IAs; each IA’s rupture status was known from medical records. Recall that CFD-simulated hemodynamics data (wall shear stress and its derivatives) are located on unstructured meshes. Hence, we mapped WSS data from an unstructured grid onto a unit disk (i.e., a uniformly sampled polar coordinate system); data in a uniformly sampled polar system is equivalent to image data. Mapped WSS data (onto the unit disk) were readily available for Radiomics analysis to extract spatial patterns of WSS data. We named this innovative technology “WSS-informatics” (i.e., using informatics techniques to analyze WSS data); the usefulness of WSS-informatics was demonstrated during the predictive modeling of IAs’ rupture status.
Results
None of the conventional WSS parameters correlated to IAs’ rupture status. However, WSS-informatics metrics were discriminative (p-value < 0.05) to IAs’ rupture status. Furthermore, predictive models with WSS-informatics features could significantly improve the prediction performance (area under the receiver operating characteristic curve [AUROC]: 0.78 vs. 0.85; p-value < 0.01).
Conclusion
The proposed innovations enabled the first study to use spatial patterns of WSS data to improve the predictive modeling of IAs’ rupture status.
期刊介绍:
The journal "Acta Neurochirurgica" publishes only original papers useful both to research and clinical work. Papers should deal with clinical neurosurgery - diagnosis and diagnostic techniques, operative surgery and results, postoperative treatment - or with research work in neuroscience if the underlying questions or the results are of neurosurgical interest. Reports on congresses are given in brief accounts. As official organ of the European Association of Neurosurgical Societies the journal publishes all announcements of the E.A.N.S. and reports on the activities of its member societies. Only contributions written in English will be accepted.