A Multicellular In Vitro Model of the Human Intestine with Immunocompetent Features Highlights Host-Pathogen Interactions During Early Salmonella Typhimurium Infection.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-01-14 DOI:10.1002/advs.202411233
Spyridon Damigos, Aylin Caliskan, Gisela Wajant, Sara Giddins, Adriana Moldovan, Sabine Kuhn, Evelyn Putz, Thomas Dandekar, Thomas Rudel, Alexander J Westermann, Daniela Zdzieblo
{"title":"A Multicellular In Vitro Model of the Human Intestine with Immunocompetent Features Highlights Host-Pathogen Interactions During Early Salmonella Typhimurium Infection.","authors":"Spyridon Damigos, Aylin Caliskan, Gisela Wajant, Sara Giddins, Adriana Moldovan, Sabine Kuhn, Evelyn Putz, Thomas Dandekar, Thomas Rudel, Alexander J Westermann, Daniela Zdzieblo","doi":"10.1002/advs.202411233","DOIUrl":null,"url":null,"abstract":"<p><p>Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult. Macrophages, for instance, contribute to the immunocompetence of native tissue, yet their incorporation into human epithelial tissue models is challenging. A 3D immunocompetent tissue model of the human small intestine based on decellularized submucosa enriched with monocyte-derived macrophages (MDM) is established. The multicellular model recapitulated in vivo-like cellular diversity, especially the induction of GP2 positive microfold (M) cells. Infection studies with STm reveal that the pathogen physically interacts with these M-like cells. MDMs show trans-epithelial migration and phagocytosed STm within the model and the levels of inflammatory cytokines are induced upon STm infection. Infected epithelial cells are shed into the supernatant, potentially reflecting an intracellular reservoir of invasion-primed STm. Together, the 3D model of the human intestinal epithelium bears potential as an alternative to animals to identify human-specific processes underlying enteric bacterial infections.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411233"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411233","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult. Macrophages, for instance, contribute to the immunocompetence of native tissue, yet their incorporation into human epithelial tissue models is challenging. A 3D immunocompetent tissue model of the human small intestine based on decellularized submucosa enriched with monocyte-derived macrophages (MDM) is established. The multicellular model recapitulated in vivo-like cellular diversity, especially the induction of GP2 positive microfold (M) cells. Infection studies with STm reveal that the pathogen physically interacts with these M-like cells. MDMs show trans-epithelial migration and phagocytosed STm within the model and the levels of inflammatory cytokines are induced upon STm infection. Infected epithelial cells are shed into the supernatant, potentially reflecting an intracellular reservoir of invasion-primed STm. Together, the 3D model of the human intestinal epithelium bears potential as an alternative to animals to identify human-specific processes underlying enteric bacterial infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Reversing Cochlear Nucleus Maladaptive Plasticity via Customized Extracochlear Stimulation: A New Approach for Tinnitus Treatment. Scale-free Spatio-temporal Correlations in Conformational Fluctuations of Intrinsically Disordered Proteins. A Multicellular In Vitro Model of the Human Intestine with Immunocompetent Features Highlights Host-Pathogen Interactions During Early Salmonella Typhimurium Infection. The Type III Secretion System (T3SS) of Escherichia Coli Promotes Atherosclerosis in Type 2 Diabetes Mellitus. Ultramicroporous Tröger's Base Framework Membranes With Ionized Sub-nanochannels for Efficient Acid/Alkali Recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1