Assessment of the effects of cadmium, samarium and gadolinium on the blue mussel (Mytilus edulis): A biochemical, transcriptomic and metabolomic approach.

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Aquatic Toxicology Pub Date : 2025-01-12 DOI:10.1016/j.aquatox.2024.107217
Binbin Cai, Laura Gandon, Clément Baratange, Oluwabunmi Eleyele, Romaric Moncrieffe, Grégory Montiel, Abderrahmane Kamari, Samuel Bertrand, Marie-José Durand, Laurence Poirier, Paul Deleris, Aurore Zalouk-Vergnoux
{"title":"Assessment of the effects of cadmium, samarium and gadolinium on the blue mussel (Mytilus edulis): A biochemical, transcriptomic and metabolomic approach.","authors":"Binbin Cai, Laura Gandon, Clément Baratange, Oluwabunmi Eleyele, Romaric Moncrieffe, Grégory Montiel, Abderrahmane Kamari, Samuel Bertrand, Marie-José Durand, Laurence Poirier, Paul Deleris, Aurore Zalouk-Vergnoux","doi":"10.1016/j.aquatox.2024.107217","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the understanding of how chemicals affect on organisms and assessing the associated environmental risks is of major interest in environmental studies. This can be achieved by using complementary approaches based on the study of the molecular responses of organisms. Because of the known chemical pressures on the environment, regulations on the content of some chemicals, such as cadmium, have been mostly completed. In contrast, the environmental toxicity of rare earth elements (REEs), which are widely used in industry, has only recently begun to receive attention. Here, we investigated the effects of cadmium, and two REEs, samarium and gadolinium, on marine mussels under laboratory exposures. We found that after an 8-day exposure at 500 µg/L, the metals were bioaccumulated by the mussels. Furthermore, samarium and gadolinium affected two oxidative stress biomarkers, GST and SOD. Lipidomic analysis showed that lipid content was modulated by the REEs, but not by cadmium. Interestingly, several compounds belonging to the phosphoinositide metabolism were more abundant, suggesting a pro-mitotic or cell survival response, while a higher abundance of cardiolipins after samarium exposure suggested an alteration of mitochondrial activity. Moreover, depending on the tissue and the metal considered, transcriptional analyses revealed an effect on metallothionein, hsp70/90, energy metabolism enzymes, as well as pro-mitotic transcript accumulation. Thus, this study sheds a new light on metal toxicity and in particularl REEs by highlighting the accumulation and toxicity of cadmium, samarium and gadolinium at 500 µg/L at different molecular levels, from gene expression to the lipidome of blue mussels.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107217"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.aquatox.2024.107217","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the understanding of how chemicals affect on organisms and assessing the associated environmental risks is of major interest in environmental studies. This can be achieved by using complementary approaches based on the study of the molecular responses of organisms. Because of the known chemical pressures on the environment, regulations on the content of some chemicals, such as cadmium, have been mostly completed. In contrast, the environmental toxicity of rare earth elements (REEs), which are widely used in industry, has only recently begun to receive attention. Here, we investigated the effects of cadmium, and two REEs, samarium and gadolinium, on marine mussels under laboratory exposures. We found that after an 8-day exposure at 500 µg/L, the metals were bioaccumulated by the mussels. Furthermore, samarium and gadolinium affected two oxidative stress biomarkers, GST and SOD. Lipidomic analysis showed that lipid content was modulated by the REEs, but not by cadmium. Interestingly, several compounds belonging to the phosphoinositide metabolism were more abundant, suggesting a pro-mitotic or cell survival response, while a higher abundance of cardiolipins after samarium exposure suggested an alteration of mitochondrial activity. Moreover, depending on the tissue and the metal considered, transcriptional analyses revealed an effect on metallothionein, hsp70/90, energy metabolism enzymes, as well as pro-mitotic transcript accumulation. Thus, this study sheds a new light on metal toxicity and in particularl REEs by highlighting the accumulation and toxicity of cadmium, samarium and gadolinium at 500 µg/L at different molecular levels, from gene expression to the lipidome of blue mussels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
期刊最新文献
Assessment of the effects of cadmium, samarium and gadolinium on the blue mussel (Mytilus edulis): A biochemical, transcriptomic and metabolomic approach. CLSSATP: Contrastive learning and self-supervised learning model for aquatic toxicity prediction From plankton to fish: The multifaceted threat of microplastics in freshwater environments Phenanthrene toxicity during early development of the neotropical tree frog Dendropsophus branneri Developmental and neurotoxic effects of dimethyl phthalate on zebrafish embryos and larvae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1