Evolutionary Pressures Shape Undifferentiated Pleomorphic Sarcoma Development and Radiotherapy Response.

IF 12.5 1区 医学 Q1 ONCOLOGY Cancer research Pub Date : 2025-01-14 DOI:10.1158/0008-5472.CAN-24-3281
Erik Blomain, Shaghayegh Soudi, Ziwei Wang, Anish Somani, Ajay Subramanian, Serey C L Nouth, Eniola Oladipo, Chistin New, Deborah E Kenney, Neda Nemat-Gorgani, Thomas Kindler, Raffi S Avedian, Robert J Steffner, David G Mohler, Susan M Hiniker, Alexander L Chin, Anusha Kalbasi, Michael S Binkley, Marius Fried, Matthias M Gaida, Matt van de Rijn, Everett J Moding
{"title":"Evolutionary Pressures Shape Undifferentiated Pleomorphic Sarcoma Development and Radiotherapy Response.","authors":"Erik Blomain, Shaghayegh Soudi, Ziwei Wang, Anish Somani, Ajay Subramanian, Serey C L Nouth, Eniola Oladipo, Chistin New, Deborah E Kenney, Neda Nemat-Gorgani, Thomas Kindler, Raffi S Avedian, Robert J Steffner, David G Mohler, Susan M Hiniker, Alexander L Chin, Anusha Kalbasi, Michael S Binkley, Marius Fried, Matthias M Gaida, Matt van de Rijn, Everett J Moding","doi":"10.1158/0008-5472.CAN-24-3281","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy is an integral component in the treatment of many types of cancer, with approximately half of cancer patients receiving radiotherapy. Systemic therapy applies pressure that can select for resistant tumor subpopulations, underscoring the importance of understanding how radiation impacts tumor evolution to improve treatment outcomes. We integrated temporal genomic profiling of 120 spatially distinct tumor regions from 20 patients with undifferentiated pleomorphic sarcomas (UPS), longitudinal circulating tumor DNA (ctDNA) analysis, and evolutionary biology computational pipelines to study UPS evolution during tumorigenesis and in response to radiotherapy. Most unirradiated UPS displayed initial linear evolution followed by subsequent branching evolution with distinct mutational processes during early and late development. Metrics of genetic divergence between regions provided evidence of strong selection pressures during UPS development that further increased during radiotherapy. Subclone abundance changed following radiotherapy with subclone contraction tied to alterations in calcium signaling, and inhibiting calcium transporters radiosensitized sarcoma cells. Finally, ctDNA analysis accurately measured subclone abundance and enabled non-invasive monitoring of subclonal changes. These results demonstrate that radiation exerts selective pressures on UPS and suggest that targeting radioresistant subclonal populations could improve outcomes after radiotherapy.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-3281","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiotherapy is an integral component in the treatment of many types of cancer, with approximately half of cancer patients receiving radiotherapy. Systemic therapy applies pressure that can select for resistant tumor subpopulations, underscoring the importance of understanding how radiation impacts tumor evolution to improve treatment outcomes. We integrated temporal genomic profiling of 120 spatially distinct tumor regions from 20 patients with undifferentiated pleomorphic sarcomas (UPS), longitudinal circulating tumor DNA (ctDNA) analysis, and evolutionary biology computational pipelines to study UPS evolution during tumorigenesis and in response to radiotherapy. Most unirradiated UPS displayed initial linear evolution followed by subsequent branching evolution with distinct mutational processes during early and late development. Metrics of genetic divergence between regions provided evidence of strong selection pressures during UPS development that further increased during radiotherapy. Subclone abundance changed following radiotherapy with subclone contraction tied to alterations in calcium signaling, and inhibiting calcium transporters radiosensitized sarcoma cells. Finally, ctDNA analysis accurately measured subclone abundance and enabled non-invasive monitoring of subclonal changes. These results demonstrate that radiation exerts selective pressures on UPS and suggest that targeting radioresistant subclonal populations could improve outcomes after radiotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化压力塑造未分化多形性肉瘤的发展和放疗反应。
放射治疗是多种癌症治疗中不可或缺的组成部分,大约一半的癌症患者接受放射治疗。全身治疗施加压力可以选择耐药肿瘤亚群,强调了解放射如何影响肿瘤进化以改善治疗结果的重要性。我们整合了来自20例未分化多形性肉瘤(UPS)患者的120个空间不同肿瘤区域的时间基因组图谱,纵向循环肿瘤DNA (ctDNA)分析和进化生物学计算管道,以研究肿瘤发生过程中UPS的进化和对放疗的反应。大多数未辐照UPS表现为初始线性进化,随后的分支进化在早期和晚期具有不同的突变过程。区域间遗传差异的度量提供了UPS发展过程中强大的选择压力的证据,这种压力在放疗期间进一步增加。放疗后亚克隆丰度发生变化,亚克隆收缩与钙信号的改变和抑制钙转运蛋白的放射致敏肉瘤细胞有关。最后,ctDNA分析准确地测量了亚克隆丰度,并实现了亚克隆变化的非侵入性监测。这些结果表明,辐射对UPS施加选择性压力,并表明靶向放射耐药亚克隆群体可以改善放疗后的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
期刊最新文献
Gli2 Facilitates Tumor Immune Evasion and Immunotherapeutic Resistance by Coordinating Wnt Ligand and Prostaglandin Signaling Targeting PRC2 Enhances the Cytotoxic Capacity of Anti-CD19 CAR-T Cells Against Hematological Malignancies Breast Cancer Subtype-Specific Organotropism Is Dictated by FOXF2-Regulated Metastatic Dormancy and Recovery. A Potent, Selective, Small-Molecule Inhibitor of DHX9 Abrogates Proliferation of Microsatellite Instable Cancers with Deficient Mismatch Repair. Chromatin Helicase CHD6 Establishes Proinflammatory Enhancers and Is a Synthetic Lethal Target in FH-Deficient Renal Cell Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1