siRNA Treatment Enhances Collagen Fiber Formation in Tissue-Engineered Meniscus via Transient Inhibition of Aggrecan Production.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-12-23 DOI:10.3390/bioengineering11121308
Serafina G Lopez, Lara A Estroff, Lawrence J Bonassar
{"title":"siRNA Treatment Enhances Collagen Fiber Formation in Tissue-Engineered Meniscus via Transient Inhibition of Aggrecan Production.","authors":"Serafina G Lopez, Lara A Estroff, Lawrence J Bonassar","doi":"10.3390/bioengineering11121308","DOIUrl":null,"url":null,"abstract":"<p><p>The complex collagen network of the native meniscus and the gradient of the density and alignment of this network through the meniscal enthesis is essential for the proper mechanical function of these tissues. This architecture is difficult to recapitulate in tissue-engineered replacement strategies. Prenatally, the organization of the collagen fiber network is established and aggrecan content is minimal. In vitro, fibrochondrocytes (FCCs) produce proteoglycans and associated glycosaminoglycan (GAG) chains early in culture, which can inhibit collagen fiber formation during the maturation of tissue-engineered menisci. Thus, it would be beneficial to both specifically and temporarily block deposition of proteoglycans early in culture. In this study, we transiently inhibited aggrecan production by meniscal fibrochondrocytes using siRNA in collagen gel-based tissue-engineered constructs. We evaluated the effect of siRNA treatment on the formation of collagen fibrils and bulk and microscale tensile properties. Specific inhibition of aggrecan production by fibrochondrocytes via siRNA was successful both in 2D monolayer cell culture and 3D tissue culture. This inhibition during early maturation of these in vitro constructs increased collagen fibril diameter by more than 2-fold. This increase in fibril diameter allowed these tissues to distribute strains more effectively at the local level, particularly at the interface of the bone and soft tissue. These data show that siRNA can be used to modulate the ECM to improve collagen fiber formation and mechanical properties in tissue-engineered constructs, and that a transient decrease in aggrecan promotes the formation of a more robust fiber network.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121308","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The complex collagen network of the native meniscus and the gradient of the density and alignment of this network through the meniscal enthesis is essential for the proper mechanical function of these tissues. This architecture is difficult to recapitulate in tissue-engineered replacement strategies. Prenatally, the organization of the collagen fiber network is established and aggrecan content is minimal. In vitro, fibrochondrocytes (FCCs) produce proteoglycans and associated glycosaminoglycan (GAG) chains early in culture, which can inhibit collagen fiber formation during the maturation of tissue-engineered menisci. Thus, it would be beneficial to both specifically and temporarily block deposition of proteoglycans early in culture. In this study, we transiently inhibited aggrecan production by meniscal fibrochondrocytes using siRNA in collagen gel-based tissue-engineered constructs. We evaluated the effect of siRNA treatment on the formation of collagen fibrils and bulk and microscale tensile properties. Specific inhibition of aggrecan production by fibrochondrocytes via siRNA was successful both in 2D monolayer cell culture and 3D tissue culture. This inhibition during early maturation of these in vitro constructs increased collagen fibril diameter by more than 2-fold. This increase in fibril diameter allowed these tissues to distribute strains more effectively at the local level, particularly at the interface of the bone and soft tissue. These data show that siRNA can be used to modulate the ECM to improve collagen fiber formation and mechanical properties in tissue-engineered constructs, and that a transient decrease in aggrecan promotes the formation of a more robust fiber network.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
siRNA处理通过瞬间抑制聚合蛋白产生增强组织工程半月板胶原纤维的形成。
天然半月板的复杂胶原网络和密度的梯度和该网络通过半月板内骨的排列对这些组织的适当机械功能是必不可少的。这种结构很难在组织工程替代策略中重现。在出生前,胶原纤维网络的组织已经建立,聚集蛋白含量很少。在体外,纤维软骨细胞(FCCs)在培养早期产生蛋白聚糖和相关的糖胺聚糖(GAG)链,这可以抑制组织工程半月板成熟过程中胶原纤维的形成。因此,在培养早期特异性和暂时性阻断蛋白聚糖的沉积都是有益的。在这项研究中,我们在胶原凝胶基组织工程构建中使用siRNA暂时抑制半月板纤维软骨细胞聚集蛋白的产生。我们评估了siRNA处理对胶原原纤维形成以及体积和微尺度拉伸性能的影响。在二维单层细胞培养和三维组织培养中,通过siRNA特异性抑制纤维软骨细胞聚集蛋白的产生是成功的。在这些体外构建物的早期成熟过程中,这种抑制使胶原纤维直径增加了2倍以上。纤维直径的增加使这些组织在局部水平上更有效地分配张力,特别是在骨和软组织的界面上。这些数据表明,siRNA可用于调节ECM,以改善组织工程构建中胶原纤维的形成和力学性能,并且聚合蛋白的短暂减少可促进更坚固的纤维网络的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
3D-Printing of Artificial Aortic Heart Valve Using UV-Cured Silicone: Design and Performance Analysis. Precision Imaging for Early Detection of Esophageal Cancer. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1