Optimizing automated photo identification for population assessments.

IF 5.2 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Conservation Biology Pub Date : 2025-01-14 DOI:10.1111/cobi.14436
Philip T Patton, Krishna Pacifici, Robin W Baird, Erin M Oleson, Jason B Allen, Erin Ashe, Aline Athayde, Charla J Basran, Elsa Cabrera, John Calambokidis, Júlio Cardoso, Emma L Carroll, Amina Cesario, Barbara J Cheney, Ted Cheeseman, Enrico Corsi, Jens J Currie, John W Durban, Erin A Falcone, Holly Fearnbach, Kiirsten Flynn, Trish Franklin, Wally Franklin, Bárbara Galletti Vernazzani, Tilen Genova, Marie Hill, David R Johnston, Erin L Keene, Claire Lacey, Sabre D Mahaffy, Tamara L McGuire, Liah McPherson, Catherine Meyer, Robert Michaud, Anastasia Miliou, Grace L Olson, Dara N Orbach, Heidi C Pearson, Marianne H Rasmussen, William J Rayment, Caroline Rinaldi, Renato Rinaldi, Salvatore Siciliano, Stephanie H Stack, Beatriz Tintore, Leigh G Torres, Jared R Towers, Reny B Tyson Moore, Caroline R Weir, Rebecca Wellard, Randall S Wells, Kymberly M Yano, Jochen R Zaeschmar, Lars Bejder
{"title":"Optimizing automated photo identification for population assessments.","authors":"Philip T Patton, Krishna Pacifici, Robin W Baird, Erin M Oleson, Jason B Allen, Erin Ashe, Aline Athayde, Charla J Basran, Elsa Cabrera, John Calambokidis, Júlio Cardoso, Emma L Carroll, Amina Cesario, Barbara J Cheney, Ted Cheeseman, Enrico Corsi, Jens J Currie, John W Durban, Erin A Falcone, Holly Fearnbach, Kiirsten Flynn, Trish Franklin, Wally Franklin, Bárbara Galletti Vernazzani, Tilen Genova, Marie Hill, David R Johnston, Erin L Keene, Claire Lacey, Sabre D Mahaffy, Tamara L McGuire, Liah McPherson, Catherine Meyer, Robert Michaud, Anastasia Miliou, Grace L Olson, Dara N Orbach, Heidi C Pearson, Marianne H Rasmussen, William J Rayment, Caroline Rinaldi, Renato Rinaldi, Salvatore Siciliano, Stephanie H Stack, Beatriz Tintore, Leigh G Torres, Jared R Towers, Reny B Tyson Moore, Caroline R Weir, Rebecca Wellard, Randall S Wells, Kymberly M Yano, Jochen R Zaeschmar, Lars Bejder","doi":"10.1111/cobi.14436","DOIUrl":null,"url":null,"abstract":"<p><p>Several legal acts mandate that management agencies regularly assess biological populations. For species with distinct markings, these assessments can be conducted noninvasively via capture-recapture and photographic identification (photo-ID), which involves processing considerable quantities of photographic data. To ease this burden, agencies increasingly rely on automated identification (ID) algorithms. Identification algorithms present agencies with an opportunity-reducing the cost of population assessments-and a challenge-propagating misidentifications into abundance estimates at a large scale. We explored several strategies for generating capture histories with an ID algorithm, evaluating trade-offs between labor costs and estimation error in a hypothetical population assessment. To that end, we conducted a simulation study informed by 39 photo-ID datasets representing 24 cetacean species. We fed the results into a custom optimization tool to discern the optimal strategy for each dataset. Our strategies included choosing between truly and partially automated photo-ID and, in the case of the latter, choosing the number of suggested matches to inspect. True automation was optimal for datasets for which the algorithm identified individuals well. As identification performance declined, the optimization recommended that users inspect more suggested matches from the ID algorithm, particularly for small datasets. False negatives (i.e., individual was resighted but erroneously marked as a first capture) strongly predicted estimation error. A 2% increase in the false negative rate translated to a 5% increase in the relative bias in abundance estimates. Our framework can be used to estimate expected error of the abundance estimate, project labor effort, and find the optimal strategy for a dataset and algorithm. We recommend estimating a strategy's false negative rate before implementing the strategy in a population assessment. Our framework provides organizations with insights into the conservation benefits and consequences of automation as conservation enters a new era of artificial intelligence for population assessments.</p>","PeriodicalId":10689,"journal":{"name":"Conservation Biology","volume":" ","pages":"e14436"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/cobi.14436","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Several legal acts mandate that management agencies regularly assess biological populations. For species with distinct markings, these assessments can be conducted noninvasively via capture-recapture and photographic identification (photo-ID), which involves processing considerable quantities of photographic data. To ease this burden, agencies increasingly rely on automated identification (ID) algorithms. Identification algorithms present agencies with an opportunity-reducing the cost of population assessments-and a challenge-propagating misidentifications into abundance estimates at a large scale. We explored several strategies for generating capture histories with an ID algorithm, evaluating trade-offs between labor costs and estimation error in a hypothetical population assessment. To that end, we conducted a simulation study informed by 39 photo-ID datasets representing 24 cetacean species. We fed the results into a custom optimization tool to discern the optimal strategy for each dataset. Our strategies included choosing between truly and partially automated photo-ID and, in the case of the latter, choosing the number of suggested matches to inspect. True automation was optimal for datasets for which the algorithm identified individuals well. As identification performance declined, the optimization recommended that users inspect more suggested matches from the ID algorithm, particularly for small datasets. False negatives (i.e., individual was resighted but erroneously marked as a first capture) strongly predicted estimation error. A 2% increase in the false negative rate translated to a 5% increase in the relative bias in abundance estimates. Our framework can be used to estimate expected error of the abundance estimate, project labor effort, and find the optimal strategy for a dataset and algorithm. We recommend estimating a strategy's false negative rate before implementing the strategy in a population assessment. Our framework provides organizations with insights into the conservation benefits and consequences of automation as conservation enters a new era of artificial intelligence for population assessments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化人口评估的自动照片识别。
一些法律法案要求管理机构定期评估生物种群。对于具有独特标记的物种,这些评估可以通过捕获-再捕获和照片识别(photo-ID)进行无创评估,这涉及到处理大量的照片数据。为了减轻这种负担,各机构越来越依赖于自动识别(ID)算法。识别算法为机构提供了一个机会——减少人口评估的成本——以及一个挑战——将错误识别传播到大规模的丰度估计中。我们探索了几种使用ID算法生成捕获历史的策略,在假设的人口评估中评估劳动力成本和估计误差之间的权衡。为此,我们利用代表24种鲸类动物的39个照片id数据集进行了模拟研究。我们将结果输入到定制的优化工具中,以识别每个数据集的最佳策略。我们的策略包括在完全自动化和部分自动化的照片id之间进行选择,在后者的情况下,选择要检查的建议匹配的数量。真正的自动化对于算法能很好地识别个体的数据集是最优的。随着识别性能的下降,优化建议用户检查更多来自ID算法的建议匹配,特别是对于小数据集。假阴性(即,个体被重新观察,但错误地标记为第一个捕获)强烈预测估计误差。假阴性率增加2%意味着丰度估计的相对偏差增加5%。我们的框架可用于估计丰度估计的期望误差、项目劳动努力,并为数据集和算法找到最佳策略。我们建议在人口评估中实施一项战略之前估计一项战略的假阴性率。随着保护进入人工智能种群评估的新时代,我们的框架为组织提供了对自动化保护效益和后果的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Conservation Biology
Conservation Biology 环境科学-环境科学
CiteScore
12.70
自引率
3.20%
发文量
175
审稿时长
2 months
期刊介绍: Conservation Biology welcomes submissions that address the science and practice of conserving Earth's biological diversity. We encourage submissions that emphasize issues germane to any of Earth''s ecosystems or geographic regions and that apply diverse approaches to analyses and problem solving. Nevertheless, manuscripts with relevance to conservation that transcend the particular ecosystem, species, or situation described will be prioritized for publication.
期刊最新文献
Potential for synergistic conservation through area-based strategies. Avoiding an impending collision in international conservation. Taxonomic and phylogenetic biases in translocated angiosperm plant species across European countries. Issue Information Coexisting with large carnivores based on the Volterra principle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1