Anny Martínez-Mira, Carlos Castillo-Saldarriaga, Liz Uribe-Gutiérrez, Elizabeth Céspedes-Gutíerrez, Diego Cortés-Rojas, Martha Gómez-Álvarez, Mauricio Cruz-Barrera
{"title":"Culture media design and scaling-up of submerged fermentation for the nematophagous fungus Duddingtonia flagrans.","authors":"Anny Martínez-Mira, Carlos Castillo-Saldarriaga, Liz Uribe-Gutiérrez, Elizabeth Céspedes-Gutíerrez, Diego Cortés-Rojas, Martha Gómez-Álvarez, Mauricio Cruz-Barrera","doi":"10.1016/j.exppara.2025.108901","DOIUrl":null,"url":null,"abstract":"<p><p>Biological control, which utilizes nematophagous fungi to reduce gastrointestinal nematode populations, may effectively diminish the need for chemical anthelmintic treatments. However, the limited knowledge surrounding the mass production of chlamydospores hinders the widespread use of biological products as alternatives to traditional anthelmintics. This study aimed to evaluate the development of liquid culture media for the large-scale production of the nematophagous fungi Duddingtonia flagrans using a systematic procedure, progressing from microplates to bioreactor. The liquid culture media were successfully validated in a 13 L bioreactor, achieving a yield of 2.18x10<sup>7</sup> chlam/g per day, which is comparable to the standard process of solid-state fermentation (SSF). Moreover, the nematode predatory ability remained unaffected by the changes in scales and exhibited a superior efficacy of over 90%. Consequently, this study demonstrates that the submerged fermentation approach serves as a viable alternative for the mass production of nematophagous fungi like D. flagrans.</p>","PeriodicalId":12117,"journal":{"name":"Experimental parasitology","volume":" ","pages":"108901"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exppara.2025.108901","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biological control, which utilizes nematophagous fungi to reduce gastrointestinal nematode populations, may effectively diminish the need for chemical anthelmintic treatments. However, the limited knowledge surrounding the mass production of chlamydospores hinders the widespread use of biological products as alternatives to traditional anthelmintics. This study aimed to evaluate the development of liquid culture media for the large-scale production of the nematophagous fungi Duddingtonia flagrans using a systematic procedure, progressing from microplates to bioreactor. The liquid culture media were successfully validated in a 13 L bioreactor, achieving a yield of 2.18x107 chlam/g per day, which is comparable to the standard process of solid-state fermentation (SSF). Moreover, the nematode predatory ability remained unaffected by the changes in scales and exhibited a superior efficacy of over 90%. Consequently, this study demonstrates that the submerged fermentation approach serves as a viable alternative for the mass production of nematophagous fungi like D. flagrans.
期刊介绍:
Experimental Parasitology emphasizes modern approaches to parasitology, including molecular biology and immunology. The journal features original research papers on the physiological, metabolic, immunologic, biochemical, nutritional, and chemotherapeutic aspects of parasites and host-parasite relationships.