Judy Z Hu, Lijun Qiao, Xianhai Zhao, Chang-Jun Liu, Guo-Bin Hu
{"title":"Continuity of Mitochondrial Budding: Insights from BS-C-1 Cells by In Situ Cryo-electron Tomography.","authors":"Judy Z Hu, Lijun Qiao, Xianhai Zhao, Chang-Jun Liu, Guo-Bin Hu","doi":"10.1093/mam/ozae122","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial division is a fundamental biological process essensial for cellular functionality and vitality. The prevailing hypothesis that dynamin related protein 1 (Drp1) provides principal control in mitochondrial division, in which it also involves the endoplasmic reticulum (ER) and the cytoskeleton, does not account for all the observations. Therefore. the hypothesis may be incomplete. Our previous study in HeLa cells led to a new hypothesis of mitochondrial division by budding. To follow-up our previous study, we employed in situ cryo-electron tomography to visualize mitochondrial budding in the intact healthy monkey kidney cells (BS-C-1 cells). Our findings reaffirm single and multiple mitochondrial budding, consistent with our observations in HeLa cells. Notably, the budding regions vary significantly in diameter and length, which may represent different stages of budding. More interestingly, neither rings nor ring-like structures, nor the wrapping of ER tubes was observed in the budding regions, suggesting mitochondrial budding is independent from Drp1 and ER. Meanwhile, we uncovered direct interactions between mitochondria and large vesicles that are distinct from small mitochondrial-derived vesicles and extracellular mitovesicles. We propose that these interacting vesicles may have mitochondrial origins.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae122","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial division is a fundamental biological process essensial for cellular functionality and vitality. The prevailing hypothesis that dynamin related protein 1 (Drp1) provides principal control in mitochondrial division, in which it also involves the endoplasmic reticulum (ER) and the cytoskeleton, does not account for all the observations. Therefore. the hypothesis may be incomplete. Our previous study in HeLa cells led to a new hypothesis of mitochondrial division by budding. To follow-up our previous study, we employed in situ cryo-electron tomography to visualize mitochondrial budding in the intact healthy monkey kidney cells (BS-C-1 cells). Our findings reaffirm single and multiple mitochondrial budding, consistent with our observations in HeLa cells. Notably, the budding regions vary significantly in diameter and length, which may represent different stages of budding. More interestingly, neither rings nor ring-like structures, nor the wrapping of ER tubes was observed in the budding regions, suggesting mitochondrial budding is independent from Drp1 and ER. Meanwhile, we uncovered direct interactions between mitochondria and large vesicles that are distinct from small mitochondrial-derived vesicles and extracellular mitovesicles. We propose that these interacting vesicles may have mitochondrial origins.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.