Coupling of single nanodiamonds hosting SiV color centers to plasmonic double bowtie microantennas.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2025-01-14 DOI:10.1088/1361-6528/ada9a4
Sarah Lindner, Nancy Rahbany, Christoph Pauly, Laia Gines, Soumen Mandal, Oliver A Williams, Andreas Muzha, Anke Krueger, Renaud Bachelot, Christophe Couteau, Christoph Becher
{"title":"Coupling of single nanodiamonds hosting SiV color centers to plasmonic double bowtie microantennas.","authors":"Sarah Lindner, Nancy Rahbany, Christoph Pauly, Laia Gines, Soumen Mandal, Oliver A Williams, Andreas Muzha, Anke Krueger, Renaud Bachelot, Christophe Couteau, Christoph Becher","doi":"10.1088/1361-6528/ada9a4","DOIUrl":null,"url":null,"abstract":"<p><p>Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties. We show successful coupling of a single nanodiamond hosting silicon-vacancy color centers to a plasmonic double bowtie antenna structure. To predict the spectrum of the coupled system, the photoluminescence spectrum of the SiV centers was measured before the coupling process and convoluted with the antenna resonance spectrum. After transferring the nanodiamond to the antenna the combined spectrum was measured again. The measurement agrees well with the calculated prediction of the coupled system and therefore confirms successful coupling.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada9a4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties. We show successful coupling of a single nanodiamond hosting silicon-vacancy color centers to a plasmonic double bowtie antenna structure. To predict the spectrum of the coupled system, the photoluminescence spectrum of the SiV centers was measured before the coupling process and convoluted with the antenna resonance spectrum. After transferring the nanodiamond to the antenna the combined spectrum was measured again. The measurement agrees well with the calculated prediction of the coupled system and therefore confirms successful coupling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将承载 SiV 色心的单个纳米金刚石与等离子双弓形微天线耦合。
色心是一种很有前途的单光子发射体,具有室温工作和高光稳定性的特点。特别是,使用纳米金刚石作为主体材料是感测和计量学的兴趣。此外,作为一个固态系统,允许结合光子系统来调整发射强度和光致发光光谱,从而使单个色中心适应所需的特性。我们展示了单个纳米金刚石承载硅空位色中心与等离子体双领结天线结构的成功耦合。为了预测耦合系统的光谱,在耦合前测量了SiV中心的光致发光光谱,并与天线共振光谱进行了卷积。将纳米金刚石转移到天线后,再次测量组合频谱。测量结果与耦合系统的预测结果吻合较好,证明了耦合是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Combined feature of enhanced stability and multi-level switching observed in TiN/Ta2O5/Ag-NPs/ITO/PET structure. Infrared photoresponse of GeSiSn p-i-n photodiodes based on quantum dots, quantum wells, pseudomorphic and relaxed layers. Spontaneous heat current and ultra-high thermal rectification in asymmetric graphene: a molecular dynamics simulation. Direct observations of nucleation and early-stage growth of Au-catalyzed GaAs nanowires on Si(111). Bimetallic AuPd alloy nanoparticles on TiO₂ nanotube arrays: a highly efficient photocatalyst for hydrogen generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1