Siyuan Peng, Yan Zhao, Wang Jiang, Yan Long, Tian Hu, Mengling Li, Jinyue Hu, Yueming Shen
{"title":"MAPK signaling mediated intestinal inflammation induced by endoplasmic reticulum stress and NOD2.","authors":"Siyuan Peng, Yan Zhao, Wang Jiang, Yan Long, Tian Hu, Mengling Li, Jinyue Hu, Yueming Shen","doi":"10.1007/s11010-025-05212-3","DOIUrl":null,"url":null,"abstract":"<p><p>Endoplasmic reticulum (ER) stress is crucially involved in inflammatory bowel disease (IBD), but the mechanisms remain incompletely understood. This study aimed to elucidate how ER stress promotes inflammation in IBD. ER stress marker Grp78 and NOD2 in colon tissues of Crohn's disease (CD) patients and IBD model mice were detected by immunohistochemical analysis. THP-1 cells were exposed to ER stress and the expression of NOD2 and inflammatory cytokines was detected by PCR. We found that ER stress markers Grp78 and NOD2 were upregulated in intestinal tissues of CD patients and in THP-1 cells exposed to ER stress. ER stress inhibitor reduced Grp78 and NOD2 expression in colitis model mice and alleviated colitis. ER stress inducer cooperated with NOD2 ligand MDP to upregulate TNF-α, IL-8 and IL-1β, and activate MAPK signaling in THP-1 cells. Moreover, inhibitors of MAPK signaling led to the downregulation of IL-1β, IL-8 and TNF-α in THP-1 cells stimulated by ER stress inducer and MDP. In conclusion, ER stress upregulates NOD2 and promotes inflammation in IBD, at least partially due to the activation of MAPK pathway.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05212-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endoplasmic reticulum (ER) stress is crucially involved in inflammatory bowel disease (IBD), but the mechanisms remain incompletely understood. This study aimed to elucidate how ER stress promotes inflammation in IBD. ER stress marker Grp78 and NOD2 in colon tissues of Crohn's disease (CD) patients and IBD model mice were detected by immunohistochemical analysis. THP-1 cells were exposed to ER stress and the expression of NOD2 and inflammatory cytokines was detected by PCR. We found that ER stress markers Grp78 and NOD2 were upregulated in intestinal tissues of CD patients and in THP-1 cells exposed to ER stress. ER stress inhibitor reduced Grp78 and NOD2 expression in colitis model mice and alleviated colitis. ER stress inducer cooperated with NOD2 ligand MDP to upregulate TNF-α, IL-8 and IL-1β, and activate MAPK signaling in THP-1 cells. Moreover, inhibitors of MAPK signaling led to the downregulation of IL-1β, IL-8 and TNF-α in THP-1 cells stimulated by ER stress inducer and MDP. In conclusion, ER stress upregulates NOD2 and promotes inflammation in IBD, at least partially due to the activation of MAPK pathway.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.