{"title":"De novo root regeneration from leaf explant: a mechanistic review of key factors behind cell fate transition.","authors":"Sumeera Asghar, Faisal Hayat, Zimo Zhao, Zhu Zheng, Nida Ghori, Zhang Lu, Yan Li, Chunli Chen","doi":"10.1007/s00425-025-04616-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR). DNRR system has wide applications in agriculture and tissue culture biotechnology. This review summarizes the recent advancements in the DNRR model for the cellular and molecular framework, targeting leaf explant of Arabidopsis and highlighting differences among direct and indirect pathways. Key findings highlight the presence of special cells in leaf explants after wounding, under different time lapses, through single-cell sequencing of the transcriptional landscape. The possible roles of reactive oxygen species (ROS), ethylene, and jasmonic acid are explored in the early establishment of wounding signals (short/long) for auxin biosynthesis, ultimately leading to adventitious root formation. The synergistic manner of 3rd type of special cells along converter and regeneration-competent cells automatically leads towards cell fate transition for auxin flux in regeneration-competent cells. The signaling mechanisms of these suggested special cells need to be further investigated to understand the DNRR mechanistic story entirely, in addition to root-to-root regeneration and stem-to-root regeneration. Meta-analysis of DNRR is also presented for past and future reference.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 2","pages":"33"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04616-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Main conclusion: De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR). DNRR system has wide applications in agriculture and tissue culture biotechnology. This review summarizes the recent advancements in the DNRR model for the cellular and molecular framework, targeting leaf explant of Arabidopsis and highlighting differences among direct and indirect pathways. Key findings highlight the presence of special cells in leaf explants after wounding, under different time lapses, through single-cell sequencing of the transcriptional landscape. The possible roles of reactive oxygen species (ROS), ethylene, and jasmonic acid are explored in the early establishment of wounding signals (short/long) for auxin biosynthesis, ultimately leading to adventitious root formation. The synergistic manner of 3rd type of special cells along converter and regeneration-competent cells automatically leads towards cell fate transition for auxin flux in regeneration-competent cells. The signaling mechanisms of these suggested special cells need to be further investigated to understand the DNRR mechanistic story entirely, in addition to root-to-root regeneration and stem-to-root regeneration. Meta-analysis of DNRR is also presented for past and future reference.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.