Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization.

IF 7.2 2区 生物学 Q1 BIOPHYSICS Quarterly Reviews of Biophysics Pub Date : 2025-01-14 DOI:10.1017/S0033583524000192
Antonio Alcaraz, José L Nieva
{"title":"Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization.","authors":"Antonio Alcaraz, José L Nieva","doi":"10.1017/S0033583524000192","DOIUrl":null,"url":null,"abstract":"<p><p>The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity <i>in vitro</i>, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"58 ","pages":"e1"},"PeriodicalIF":7.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583524000192","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity in vitro, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
病毒孔蛋白:宿主膜渗透的发现、研究方法和机制。
“毒孔蛋白”家族包括许多由动植物病毒编码的小尺寸整体膜蛋白。尽管它们的序列和结构多样,但病毒孔蛋白有一个共同的功能趋势:它们在病毒复制周期中组装跨膜通道的能力。它们的选择性范围从低ph激活的单向质子转运体到允许代谢物被动扩散的尺寸有限的渗透孔。通过尚未完全了解的机制,病毒孔蛋白的表达促进了病毒粒子从感染细胞的组装/释放,并破坏了细胞生理学,促进了细胞致病性。已知在体外与病毒孔蛋白相互作用并干扰其膜渗透活性的化合物可抑制病毒产生。此外,病毒孔蛋白缺陷病毒是预防人类和牲畜病原体感染的减毒活疫苗的一个来源。这篇综述深入探讨了毒孔蛋白概念的起源和演变,总结了一些用于表征这些重要毒力因子的结构-功能关系的方法,并试图从生物物理的角度对它们进行分类,包括它们的离子/溶质跨膜运输机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quarterly Reviews of Biophysics
Quarterly Reviews of Biophysics 生物-生物物理
CiteScore
12.90
自引率
1.60%
发文量
16
期刊介绍: Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.
期刊最新文献
Machinery, mechanism and information in post-transcription control of gene expression, from the perspective of unstable RNA. DYNAMICS AND KINETICS IN STRUCTURAL BIOLOGY: THE EXAMPLE OF DNA PHOTOLYASE. Allostery. S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology. From resting potential to dynamics: advances in membrane voltage indicators and imaging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1