{"title":"Dynamics and kinetics in structural biology: the example of DNA photolyase.","authors":"Keith Moffat","doi":"10.1017/S0033583524000222","DOIUrl":null,"url":null,"abstract":"<p><p>All biochemical reactions directly involve structural changes that may occur over a very wide range of timescales from femtoseconds to seconds. Understanding the mechanism of action thus requires determination of both the static structures of the macromolecule involved and short-lived intermediates between reactant and product. This requires either freeze-trapping of intermediates, for example by cryo-electron microscopy, or direct determination of structures in active systems at near-physiological temperature by time-resolved X-ray crystallography. Storage ring X-ray sources effectively cover the time range down to around 100 ps that reveal tertiary and quaternary structural changes in proteins. The briefer pulses emitted by hard X-ray free electron laser sources extend that range to femtoseconds, which covers critical chemical reactions such as electron transfer, isomerization, breaking of covalent bonds, and ultrafast structural changes in light-sensitive protein chromophores and their protein environment. These reactions are exemplified by the time-resolved X-ray studies by two groups of the FAD-based DNA repair enzyme, DNA photolyase, over the time range from 1 ps to 100 μs.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"e8"},"PeriodicalIF":7.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583524000222","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
All biochemical reactions directly involve structural changes that may occur over a very wide range of timescales from femtoseconds to seconds. Understanding the mechanism of action thus requires determination of both the static structures of the macromolecule involved and short-lived intermediates between reactant and product. This requires either freeze-trapping of intermediates, for example by cryo-electron microscopy, or direct determination of structures in active systems at near-physiological temperature by time-resolved X-ray crystallography. Storage ring X-ray sources effectively cover the time range down to around 100 ps that reveal tertiary and quaternary structural changes in proteins. The briefer pulses emitted by hard X-ray free electron laser sources extend that range to femtoseconds, which covers critical chemical reactions such as electron transfer, isomerization, breaking of covalent bonds, and ultrafast structural changes in light-sensitive protein chromophores and their protein environment. These reactions are exemplified by the time-resolved X-ray studies by two groups of the FAD-based DNA repair enzyme, DNA photolyase, over the time range from 1 ps to 100 μs.
期刊介绍:
Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.