Julia Foust, Morgan McCloud, Amit Narawane, Robert M Trout, Xi Chen, Al-Hafeez Dhalla, Jianwei D Li, Christian Viehland, Mark Draelos, Lejla Vajzovic, Ryan P McNabb, Anthony N Kuo, Cynthia A Toth
{"title":"New Directions for Ophthalmic OCT - Handhelds, Surgery, and Robotics.","authors":"Julia Foust, Morgan McCloud, Amit Narawane, Robert M Trout, Xi Chen, Al-Hafeez Dhalla, Jianwei D Li, Christian Viehland, Mark Draelos, Lejla Vajzovic, Ryan P McNabb, Anthony N Kuo, Cynthia A Toth","doi":"10.1167/tvst.14.1.14","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of optical coherence tomography (OCT) in the 1990s revolutionized diagnostic ophthalmic imaging. Initially, OCT's role was primarily in the adult ambulatory ophthalmic clinics. Subsequent advances in handheld form factors, integration into surgical microscopes, and robotic assistance have expanded OCT's utility and impact outside of its initial environment in the adult outpatient ophthalmic clinic. In this review, we cover the use of OCT in the neonatal intensive care unit (NICU) environment with a handheld OCT, recent developments in intraoperative OCT for data visualization and measurements, and recent work and demonstration of robotically aligned OCT systems outside of eye clinics. Of note, advances in these areas are a legacy of our colleague, the late Joseph Izatt. OCT has been an important innovation for ocular diagnostics, and these advances have helped it continue to extend in new directions.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"14 1","pages":"14"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.14.1.14","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of optical coherence tomography (OCT) in the 1990s revolutionized diagnostic ophthalmic imaging. Initially, OCT's role was primarily in the adult ambulatory ophthalmic clinics. Subsequent advances in handheld form factors, integration into surgical microscopes, and robotic assistance have expanded OCT's utility and impact outside of its initial environment in the adult outpatient ophthalmic clinic. In this review, we cover the use of OCT in the neonatal intensive care unit (NICU) environment with a handheld OCT, recent developments in intraoperative OCT for data visualization and measurements, and recent work and demonstration of robotically aligned OCT systems outside of eye clinics. Of note, advances in these areas are a legacy of our colleague, the late Joseph Izatt. OCT has been an important innovation for ocular diagnostics, and these advances have helped it continue to extend in new directions.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.