Thomas Imbert, Jean-Christophe Poggiale, Mathias Gauduchon
{"title":"Intra-specific diversity and adaptation modify regime shifts dynamics under environmental change.","authors":"Thomas Imbert, Jean-Christophe Poggiale, Mathias Gauduchon","doi":"10.3934/mbe.2024342","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental changes are a growing concern, as they exert pressures on ecosystems. In some cases, such changes lead to shifts in ecosystem structure. However, species can adapt to changes through evolution, and it is unclear how evolution interacts with regime shifts, which restricts ecosystem management strategies. Here, we used a model of prey population with evolution and intra-specific trait diversity, and simulated regime shifts through changes in predation pressure. We then explored interactions between evolution, diversity, and shifts in population density. Evolution induced delayed or early regime shifts, and altered the recovery of populations. Such changes depended on the relative speed of evolution and change of predation pressure, as well as on the initial state of the population. Evolution also influenced population resilience, which was important when considering strong environmental variability. For instance, storms can spontaneously increase mortality and induce shifts. Furthermore, environmental variability induced even higher mortality if the phenotypic diversity of populations is large. Some phenotypes were more vulnerable to environmental changes, and such increases in mortality favor shifts to decreases in density. Thus, population management needs to consider diversity, evolution, and environmental change altogether to better anticipate regime shifts on eco-evolutionary time scales. Here, evolution and diversity showed complex interactions with population shift dynamics. Investigating the influence of higher diversity levels, such as diversity at a community level, should be another step towards anticipating changes in ecosystems and communities.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 12","pages":"7783-7804"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024342","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental changes are a growing concern, as they exert pressures on ecosystems. In some cases, such changes lead to shifts in ecosystem structure. However, species can adapt to changes through evolution, and it is unclear how evolution interacts with regime shifts, which restricts ecosystem management strategies. Here, we used a model of prey population with evolution and intra-specific trait diversity, and simulated regime shifts through changes in predation pressure. We then explored interactions between evolution, diversity, and shifts in population density. Evolution induced delayed or early regime shifts, and altered the recovery of populations. Such changes depended on the relative speed of evolution and change of predation pressure, as well as on the initial state of the population. Evolution also influenced population resilience, which was important when considering strong environmental variability. For instance, storms can spontaneously increase mortality and induce shifts. Furthermore, environmental variability induced even higher mortality if the phenotypic diversity of populations is large. Some phenotypes were more vulnerable to environmental changes, and such increases in mortality favor shifts to decreases in density. Thus, population management needs to consider diversity, evolution, and environmental change altogether to better anticipate regime shifts on eco-evolutionary time scales. Here, evolution and diversity showed complex interactions with population shift dynamics. Investigating the influence of higher diversity levels, such as diversity at a community level, should be another step towards anticipating changes in ecosystems and communities.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).