Prescriptive temporal modeling approach using climate variables to forecast dengue incidence in Córdoba, Colombia.

IF 2.6 4区 工程技术 Q1 Mathematics Mathematical Biosciences and Engineering Pub Date : 2024-12-06 DOI:10.3934/mbe.2024341
Ever Medina, Myladis R Cogollo, Gilberto González-Parra
{"title":"Prescriptive temporal modeling approach using climate variables to forecast dengue incidence in Córdoba, Colombia.","authors":"Ever Medina, Myladis R Cogollo, Gilberto González-Parra","doi":"10.3934/mbe.2024341","DOIUrl":null,"url":null,"abstract":"<p><p>We present a modeling strategy to forecast the incidence rate of dengue in the department of Córdoba, Colombia, thereby considering the effect of climate variables. A Seasonal Autoregressive Integrated Moving Average model with exogenous variables (SARIMAX) model is fitted under a cross-validation approach, and we examine the effect of the exogenous variables on the performance of the model. This study uses data of dengue cases, precipitation, and relative humidity reported from years 2007 to 2021. We consider three configurations of sizes training set-test set: 182-13,189-6, and 192-3. The results support the theory of the relationship between precipitation, relative humidity, and dengue incidence rate. We find that the performance of the models improves when the time series models are previously adjusted for each of the exogenous variables, and their forecasts are used to determine the future values of the dengue incidence rate. Additionally, we find that the configurations 189-6 and 192-3 present the most consistent results with regard to the model's performance in the training and test data sets.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 12","pages":"7760-7782"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024341","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We present a modeling strategy to forecast the incidence rate of dengue in the department of Córdoba, Colombia, thereby considering the effect of climate variables. A Seasonal Autoregressive Integrated Moving Average model with exogenous variables (SARIMAX) model is fitted under a cross-validation approach, and we examine the effect of the exogenous variables on the performance of the model. This study uses data of dengue cases, precipitation, and relative humidity reported from years 2007 to 2021. We consider three configurations of sizes training set-test set: 182-13,189-6, and 192-3. The results support the theory of the relationship between precipitation, relative humidity, and dengue incidence rate. We find that the performance of the models improves when the time series models are previously adjusted for each of the exogenous variables, and their forecasts are used to determine the future values of the dengue incidence rate. Additionally, we find that the configurations 189-6 and 192-3 present the most consistent results with regard to the model's performance in the training and test data sets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用气候变量预测哥伦比亚Córdoba登革热发病率的规定性时间模型方法。
考虑到气候变量的影响,我们提出了一种预测哥伦比亚科尔多瓦省登革热发病率的建模策略。我们采用交叉验证的方法拟合了带有外生变量的季节自回归整合移动平均模型(SARIMAX),并检验了外生变量对模型性能的影响。本研究使用了 2007 年至 2021 年的登革热病例、降水量和相对湿度数据。我们考虑了训练集-测试集的三种大小配置:182-13、189-6 和 192-3。结果支持降水、相对湿度和登革热发病率之间关系的理论。我们发现,当时间序列模型事先针对每个外生变量进行调整,并利用其预测值来确定登革热发病率的未来值时,模型的性能会得到改善。此外,我们还发现,189-6 和 192-3 配置在模型的训练和测试数据集性能方面呈现出最一致的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
期刊最新文献
Correction to "Data augmentation based semi-supervised method to improve COVID-19 CT classification" [Mathematical Biosciences and Engineering 20(4) (2023) 6838-6852]. Correction to "IMC-MDA: Prediction of miRNA-disease association based on induction matrix completion" [Mathematical Biosciences and Engineering 20(6) (2023) 10659-10674]. A semi-supervised deep neuro-fuzzy iterative learning system for automatic segmentation of hippocampus brain MRI. Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis. Intra-specific diversity and adaptation modify regime shifts dynamics under environmental change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1