Classical and Modern Models for Biofilm Studies: A Comprehensive Review.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES Antibiotics-Basel Pub Date : 2024-12-18 DOI:10.3390/antibiotics13121228
Zhihe Yang, Sadaf Aiman Khan, Laurence J Walsh, Zyta M Ziora, Chaminda Jayampath Seneviratne
{"title":"Classical and Modern Models for Biofilm Studies: A Comprehensive Review.","authors":"Zhihe Yang, Sadaf Aiman Khan, Laurence J Walsh, Zyta M Ziora, Chaminda Jayampath Seneviratne","doi":"10.3390/antibiotics13121228","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms are structured microbial communities that adhere to various abiotic and biotic surfaces, where organisms are encased in an exo-polysaccharide matrix. Organisms within biofilms use various mechanisms that help them resist external challenges, such as antibiotics, rendering them more resistant to drugs. Therefore, researchers have attempted to develop suitable laboratory models to study the physical features of biofilms, their resistance mechanisms against antimicrobial agents, and their gene and protein expression profiles. However, current laboratory models suffer from various limitations. In this comprehensive review, we have summarized the various designs that have been used for laboratory biofilm models, presenting their strengths and limitations. Additionally, we have provided insight into improving these models to more closely simulate real-life scenarios, using newly developed techniques in additive manufacturing, synthetic biology, and bioengineering.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"13 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics13121228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilms are structured microbial communities that adhere to various abiotic and biotic surfaces, where organisms are encased in an exo-polysaccharide matrix. Organisms within biofilms use various mechanisms that help them resist external challenges, such as antibiotics, rendering them more resistant to drugs. Therefore, researchers have attempted to develop suitable laboratory models to study the physical features of biofilms, their resistance mechanisms against antimicrobial agents, and their gene and protein expression profiles. However, current laboratory models suffer from various limitations. In this comprehensive review, we have summarized the various designs that have been used for laboratory biofilm models, presenting their strengths and limitations. Additionally, we have provided insight into improving these models to more closely simulate real-life scenarios, using newly developed techniques in additive manufacturing, synthetic biology, and bioengineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物膜研究的经典和现代模型:全面回顾。
生物膜是附着在各种非生物和生物表面的结构化微生物群落,其中生物体被包裹在外多糖基质中。生物膜内的生物使用各种机制来帮助它们抵抗外部挑战,如抗生素,使它们对药物具有更强的抵抗力。因此,研究人员试图建立合适的实验室模型来研究生物膜的物理特征、它们对抗菌剂的耐药机制以及它们的基因和蛋白质表达谱。然而,目前的实验室模型受到各种限制。在这篇全面的综述中,我们总结了用于实验室生物膜模型的各种设计,并介绍了它们的优点和局限性。此外,我们还利用新开发的增材制造、合成生物学和生物工程技术,提供了改进这些模型的见解,以更紧密地模拟现实场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
期刊最新文献
Efficacy of Cefiderocol Against Endophthalmitis Isolates. Study on the Efficacy and Safety of Tedizolid in Japanese Patients. Identification and Bioactivity Analysis of a Novel Bacillus Species, B. maqinnsis sp. nov. Bos-x6-28, Isolated from Feces of the Yak (Bos grunniens). Bacterial Pathogen Profiles and Antibiotic Resistance in Pediatric Leukemia Patients: Insights for Optimizing Infection Management in Immunocompromised Children. Comparative Genome Analysis of Canine Frederiksenia canicola Isolates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1