An AI-directed analytical study on the optical transmission microscopic images of Pseudomonas aeruginosa in planktonic and biofilm states.

ArXiv Pub Date : 2024-12-24
Bidisha Sengupta, Mousa Alrubayan, Yibin Wang, Esther Mallet, Angel Torres, Ravyn Solis, Haifeng Wang, Prabhakar Pradhan
{"title":"An AI-directed analytical study on the optical transmission microscopic images of Pseudomonas aeruginosa in planktonic and biofilm states.","authors":"Bidisha Sengupta, Mousa Alrubayan, Yibin Wang, Esther Mallet, Angel Torres, Ravyn Solis, Haifeng Wang, Prabhakar Pradhan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by <i>Pseudomonas aeruginosa</i> with high accuracy. Aptamer DNA templated silver nanocluster (Ag-NC) was used to prevent biofilm formation, which produced images of the planktonic states of the bacteria. Large-volume bright field images of bacterial biofilms were used to design the AI model. In particular, we used U-Net with ResNet encoder enhancement to segment biofilm images for AI analysis. Different degrees of biofilm structures can be efficiently detected using ResNet18 and ResNet34 backbones. The potential applications of this technique are also discussed.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by Pseudomonas aeruginosa with high accuracy. Aptamer DNA templated silver nanocluster (Ag-NC) was used to prevent biofilm formation, which produced images of the planktonic states of the bacteria. Large-volume bright field images of bacterial biofilms were used to design the AI model. In particular, we used U-Net with ResNet encoder enhancement to segment biofilm images for AI analysis. Different degrees of biofilm structures can be efficiently detected using ResNet18 and ResNet34 backbones. The potential applications of this technique are also discussed.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浮游和生物膜状态铜绿假单胞菌光学透射显微图像的人工智能定向分析研究。
生物膜是对健康和食品工业构成风险并造成环境污染的耐药微生物细胞聚集体。准确和有效的检测和预防生物膜是具有挑战性的,需要跨学科的方法。这项多学科研究报告了一种基于深度学习的人工智能(AI)模型的应用,用于高精度检测铜绿假单胞菌产生的生物膜。核酸适配体DNA模板银纳米簇(Ag-NC)用于防止生物膜的形成,从而产生细菌浮游状态的图像。利用细菌生物膜的大体积亮场图像设计人工智能模型。特别是,我们使用带有ResNet编码器增强的U-Net来分割生物膜图像以进行人工智能分析。使用ResNet18和ResNet34骨干网可以有效地检测不同程度的生物膜结构。并对该技术的潜在应用进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MassSpecGym: A benchmark for the discovery and identification of molecules. The shape of the brain's connections is predictive of cognitive performance: an explainable machine learning study. A Physics-Informed Deep Learning Model for MRI Brain Motion Correction. In-Silico Investigation of 3D Quantitative Angiography for Internal Carotid Aneurysms Using Biplane Imaging and 3D Vascular Geometry Constraints. Optimizing Global Genomic Surveillance for Early Detection of Emerging SARS-CoV-2 Variants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1