Tae-Ung Wi, Zachary H Levell, Shaoyun Hao, Ahmad Elgazzar, Peng Zhu, Yuge Feng, Feng-Yang Chen, Wei Ping Lam, Mohsen Shakouri, Yuanyue Liu, Haotian Wang
{"title":"Selective and Stable Ethanol Synthesis via Electrochemical CO2 Reduction in a Solid Electrolyte Reactor","authors":"Tae-Ung Wi, Zachary H Levell, Shaoyun Hao, Ahmad Elgazzar, Peng Zhu, Yuge Feng, Feng-Yang Chen, Wei Ping Lam, Mohsen Shakouri, Yuanyue Liu, Haotian Wang","doi":"10.1021/acsenergylett.4c03091","DOIUrl":null,"url":null,"abstract":"Electrochemical CO<sub>2</sub> reduction to ethanol faces challenges such as low selectivity, a product mixture with liquid electrolyte, and poor catalyst/reactor stability. Here, we developed a grain-rich zinc-doped Cu<sub>2</sub>O precatalyst that presented a high ethanol Faradaic efficiency of over 40% under a current density of 350 mA·cm<sup>–2</sup>. Our density functional theory (DFT) simulation suggested that Zn atoms inside the structure have a greater carbophilicity than the Cu atoms to help facilitate *CHCHO formation, a key reaction intermediate toward ethanol instead of other C<sub>2</sub> products. A high Faradaic efficiency ratio between ethanol and ethylene (FE<sub>EtOH</sub>/FE<sub>C2H4</sub>) reached 2.34 in the zinc-doped Cu<sub>2</sub>O precatalyst, representing an over 4-fold improvement compared to bare Cu<sub>2</sub>O precatalyst. By integrating this Cu-based catalyst into a porous solid electrolyte (PSE) reactor with a salt-managing design, we achieved stable ethanol production for over 180 h under a current density of 250 mA·cm<sup>–2</sup> while maintaining ethanol selectivity at ∼30%.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"106 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03091","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical CO2 reduction to ethanol faces challenges such as low selectivity, a product mixture with liquid electrolyte, and poor catalyst/reactor stability. Here, we developed a grain-rich zinc-doped Cu2O precatalyst that presented a high ethanol Faradaic efficiency of over 40% under a current density of 350 mA·cm–2. Our density functional theory (DFT) simulation suggested that Zn atoms inside the structure have a greater carbophilicity than the Cu atoms to help facilitate *CHCHO formation, a key reaction intermediate toward ethanol instead of other C2 products. A high Faradaic efficiency ratio between ethanol and ethylene (FEEtOH/FEC2H4) reached 2.34 in the zinc-doped Cu2O precatalyst, representing an over 4-fold improvement compared to bare Cu2O precatalyst. By integrating this Cu-based catalyst into a porous solid electrolyte (PSE) reactor with a salt-managing design, we achieved stable ethanol production for over 180 h under a current density of 250 mA·cm–2 while maintaining ethanol selectivity at ∼30%.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.