Recursive Quantum Relaxation for Combinatorial Optimization Problems

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-01-15 DOI:10.22331/q-2025-01-15-1594
Ruho Kondo, Yuki Sato, Rudy Raymond, Naoki Yamamoto
{"title":"Recursive Quantum Relaxation for Combinatorial Optimization Problems","authors":"Ruho Kondo, Yuki Sato, Rudy Raymond, Naoki Yamamoto","doi":"10.22331/q-2025-01-15-1594","DOIUrl":null,"url":null,"abstract":"Quantum optimization methods use a continuous degree-of-freedom of quantum states to heuristically solve combinatorial problems, such as the MAX-CUT problem, which can be attributed to various NP-hard combinatorial problems. This paper shows that some existing quantum optimization methods can be unified into a solver to find the binary solution which is most likely measured from the optimal quantum state. Combining this finding with the concept of quantum random access codes (QRACs) for encoding bits into quantum states on fewer qubits, we propose an efficient recursive quantum relaxation method called recursive quantum random access optimization (RQRAO) for MAX-CUT. Experiments on standard benchmark graphs with several hundred nodes in the MAX-CUT problem, conducted in a fully classical manner using a tensor network technique, show that RQRAO not only outperforms the Goemans-Williamson and recursive QAOA methods, but also is comparable to state-of-the-art classical solvers. The code is available at https://github.com/ToyotaCRDL/rqrao.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"1 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-01-15-1594","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum optimization methods use a continuous degree-of-freedom of quantum states to heuristically solve combinatorial problems, such as the MAX-CUT problem, which can be attributed to various NP-hard combinatorial problems. This paper shows that some existing quantum optimization methods can be unified into a solver to find the binary solution which is most likely measured from the optimal quantum state. Combining this finding with the concept of quantum random access codes (QRACs) for encoding bits into quantum states on fewer qubits, we propose an efficient recursive quantum relaxation method called recursive quantum random access optimization (RQRAO) for MAX-CUT. Experiments on standard benchmark graphs with several hundred nodes in the MAX-CUT problem, conducted in a fully classical manner using a tensor network technique, show that RQRAO not only outperforms the Goemans-Williamson and recursive QAOA methods, but also is comparable to state-of-the-art classical solvers. The code is available at https://github.com/ToyotaCRDL/rqrao.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组合优化问题的递归量子松弛法
量子优化方法利用量子态的连续自由度来启发式地解决组合问题,如MAX-CUT问题,这可以归因于各种NP-hard组合问题。本文表明,现有的一些量子优化方法可以统一为一个求解器,以寻找最优量子态最可能测量到的二进制解。将这一发现与量子随机存取码(qrac)的概念相结合,我们提出了一种高效的递归量子松弛方法,称为递归量子随机存取优化(RQRAO),用于MAX-CUT。在具有几百个节点的MAX-CUT问题的标准基准图上,使用张量网络技术以完全经典的方式进行的实验表明,RQRAO不仅优于Goemans-Williamson和递归QAOA方法,而且与最先进的经典求解器相当。代码可在https://github.com/ToyotaCRDL/rqrao上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Dynamic complexities in a parasitoid-host-parasitoid ecological model
IF 7.8 1区 数学Chaos Solitons & FractalsPub Date : 2009-01-15 DOI: 10.1016/j.chaos.2007.01.149
Hengguo Yu , Min Zhao , Songjuan Lv , Lili Zhu
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Mpemba effect and super-accelerated thermalization in the damped quantum harmonic oscillator Fault-tolerant Quantum Error Correction Using a Linear Array of Emitters Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems Tensor Product Structure Geometry under Unitary Channels Low-overhead non-Clifford fault-tolerant circuits for all non-chiral abelian topological phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1