Ning Ding, Bo Zhang, Eslam M. Hamed, Mingwei Qin, Li Ji, Shuo Qi, Sam Fong Yau Li, Zhouping Wang
{"title":"Aptamer-Driven Multifunctional Nanoplatform for Near-Infrared Fluorescence Imaging and Rapid In Situ Inactivation of Salmonella typhimurium","authors":"Ning Ding, Bo Zhang, Eslam M. Hamed, Mingwei Qin, Li Ji, Shuo Qi, Sam Fong Yau Li, Zhouping Wang","doi":"10.1021/acs.analchem.4c05949","DOIUrl":null,"url":null,"abstract":"<i>Salmonella typhimurium</i> (<i>S. typhimurium</i>) is a prominent pathogen responsible for intestinal infections, primarily transmitted through contaminated food and water. This underscores the critical need for precise and biocompatible technologies enabling early detection and intervention of bacterial colonization <i>in vivo</i>. Herein, a multifunctional nanoplatform (IR808-Au@ZIF-90-Apt) was designed, utilizing an <i>S. typhimurium</i>-specific aptamer to initiate cascade responses triggered by intracellular ATP and GSH. The nanoplatform precisely targets <i>S. typhimurium</i><i>via</i> aptamer recognition, promoting bacterial aggregation through nanoparticle sedimentation in an oscillatory system. Furthermore, the intelligent nanoplatform significantly enhances the sensitivity of <i>S. typhimurium</i> detection based on near-infrared (NIR) fluorescence signals, achieving a detection limit as low as 2 CFU mL<sup>–1</sup>. Additionally, <i>in situ</i> NIR irradiation was applied at the 30 min peak of fluorescence detection, enabling rapid and irreversible inactivation of <i>S. typhimurium</i> through the synergistic effects of photothermal and photodynamic effects. Importantly, in a mouse model of intestinal infection, the nanoplatform successfully detected early <i>S. typhimurium</i> colonization and achieved highly efficient <i>in situ</i> inactivation without adversely affecting the major organs. In conclusion, the nanoplatform achieved precise localized detection and <i>in situ</i> inactivation of <i>S. typhimurium</i>, offering valuable insights for disease surveillance and epidemiological studies, with promising implications for food safety and public health.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"22 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05949","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Salmonella typhimurium (S. typhimurium) is a prominent pathogen responsible for intestinal infections, primarily transmitted through contaminated food and water. This underscores the critical need for precise and biocompatible technologies enabling early detection and intervention of bacterial colonization in vivo. Herein, a multifunctional nanoplatform (IR808-Au@ZIF-90-Apt) was designed, utilizing an S. typhimurium-specific aptamer to initiate cascade responses triggered by intracellular ATP and GSH. The nanoplatform precisely targets S. typhimuriumvia aptamer recognition, promoting bacterial aggregation through nanoparticle sedimentation in an oscillatory system. Furthermore, the intelligent nanoplatform significantly enhances the sensitivity of S. typhimurium detection based on near-infrared (NIR) fluorescence signals, achieving a detection limit as low as 2 CFU mL–1. Additionally, in situ NIR irradiation was applied at the 30 min peak of fluorescence detection, enabling rapid and irreversible inactivation of S. typhimurium through the synergistic effects of photothermal and photodynamic effects. Importantly, in a mouse model of intestinal infection, the nanoplatform successfully detected early S. typhimurium colonization and achieved highly efficient in situ inactivation without adversely affecting the major organs. In conclusion, the nanoplatform achieved precise localized detection and in situ inactivation of S. typhimurium, offering valuable insights for disease surveillance and epidemiological studies, with promising implications for food safety and public health.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.