Introducing halogen-bonded gates in zeolitic frameworks for efficient benzene/cyclohexene/cyclohexane separation

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-01-15 DOI:10.1039/d4sc06624c
Zi-Jun Liang, Fang-Di Dong, Le Ye, Kai Zheng, Ding-Yi Hu, Xi Feng, Wen-Yu Su, Zhi-Shuo Wang, Mu-Yang Zhou, Zi-Luo Fang, Dong-Dong Zhou, Jie-Peng Zhang, Xiao-Ming Chen
{"title":"Introducing halogen-bonded gates in zeolitic frameworks for efficient benzene/cyclohexene/cyclohexane separation","authors":"Zi-Jun Liang, Fang-Di Dong, Le Ye, Kai Zheng, Ding-Yi Hu, Xi Feng, Wen-Yu Su, Zhi-Shuo Wang, Mu-Yang Zhou, Zi-Luo Fang, Dong-Dong Zhou, Jie-Peng Zhang, Xiao-Ming Chen","doi":"10.1039/d4sc06624c","DOIUrl":null,"url":null,"abstract":"The separation of C<small><sub>6</sub></small> cyclic hydrocarbons (benzene, cyclohexene, and cyclohexane) is one of the most challenging chemical separations in the petrochemical industries. Herein, we design and synthesize a new SOD-topology metal azolate framework (MAF) with aperture gating behaviour controlled by C‒Br‧‧‧N halogen bonds, which exhibits distinct temperature- and guest-dependent adsorption behaviours for benzene/cyclohexene/cyclohexane. More importantly, the MAF enables the efficient purification of benzene from its binary and ternary mixtures (selectivity up to 113±2; purity up to 98%+), which is the highest record for benzene/cyclohexane/cyclohexene separation to date. Single-crystal diffraction analyses and computational simulations revealed that halogen bonds play a critical role in the gating and diffusion process, which is the first example of halogen-bonding controlled gating for highly effective adsorptive separation.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"24 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06624c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The separation of C6 cyclic hydrocarbons (benzene, cyclohexene, and cyclohexane) is one of the most challenging chemical separations in the petrochemical industries. Herein, we design and synthesize a new SOD-topology metal azolate framework (MAF) with aperture gating behaviour controlled by C‒Br‧‧‧N halogen bonds, which exhibits distinct temperature- and guest-dependent adsorption behaviours for benzene/cyclohexene/cyclohexane. More importantly, the MAF enables the efficient purification of benzene from its binary and ternary mixtures (selectivity up to 113±2; purity up to 98%+), which is the highest record for benzene/cyclohexane/cyclohexene separation to date. Single-crystal diffraction analyses and computational simulations revealed that halogen bonds play a critical role in the gating and diffusion process, which is the first example of halogen-bonding controlled gating for highly effective adsorptive separation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Back cover Inside back cover Grappa – a machine learned molecular mechanics force field Periodic Law-Guided Design of Highly Stable O3-Type Layered Oxide Cathodes for Practical Sodium-Ion Batteries Introducing halogen-bonded gates in zeolitic frameworks for efficient benzene/cyclohexene/cyclohexane separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1