{"title":"Halogen-Free Wide Band Gap Polymer Donors Based on Dicyanobithiophene for Efficient Organic Solar Cells","authors":"Xiyue Yuan, Bo Zhang, Youle Li, Feixiang Zhao, Wenkui Wei, Yue Zhang, Junyu Li, Yuchuan Tian, Zaifei Ma, Zheng Tang, Zhitian Liu, Fei Huang, Yong Cao, Chunhui Duan","doi":"10.1021/acsami.4c17974","DOIUrl":null,"url":null,"abstract":"Conjugated polymer donors have always been one of the important components of organic solar cells (OSCs), particularly those featuring simple synthetic routes, proper energy levels, and appropriate aggregation behavior. In this work, we employed a nonfused electron-deficient building block, dicyanobithiophene (2CT), for constructing high-performance donors. Combining this with side-chain engineering, two novel halogen-free polymer donors, PB2CT-BO and PB2CT-HD, were reported. PB2CT-BO with shorter alkyl chains on the thiophene π bridges exhibited enhanced packing ordering and improved polymer crystallinity. When paired with BTP-CN-HD as the electron acceptor, the PB2CT-BO-based OSC attained an impressive power conversion efficiency (PCE) of 14.2% within a bulk-heterojunction (BHJ) configuration. Additionally, the active layers were refined through a layer-by-layer (LbL) approach, leading to a more organized molecular packing and an improved fibrillar network. Consequently, the OSC employing PB2CT-BO processed with the LbL approach achieved a notable PCE of 15.3%. This enhancement is credited to a reduced energy loss (<i>E</i><sub>loss</sub>) of 0.514 eV and the formation of a favorable morphology. This study highlights the considerable promise of the 2CT unit in the progression of high-efficiency polymer donors with a reduced <i>E</i><sub>loss</sub>.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"52 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17974","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conjugated polymer donors have always been one of the important components of organic solar cells (OSCs), particularly those featuring simple synthetic routes, proper energy levels, and appropriate aggregation behavior. In this work, we employed a nonfused electron-deficient building block, dicyanobithiophene (2CT), for constructing high-performance donors. Combining this with side-chain engineering, two novel halogen-free polymer donors, PB2CT-BO and PB2CT-HD, were reported. PB2CT-BO with shorter alkyl chains on the thiophene π bridges exhibited enhanced packing ordering and improved polymer crystallinity. When paired with BTP-CN-HD as the electron acceptor, the PB2CT-BO-based OSC attained an impressive power conversion efficiency (PCE) of 14.2% within a bulk-heterojunction (BHJ) configuration. Additionally, the active layers were refined through a layer-by-layer (LbL) approach, leading to a more organized molecular packing and an improved fibrillar network. Consequently, the OSC employing PB2CT-BO processed with the LbL approach achieved a notable PCE of 15.3%. This enhancement is credited to a reduced energy loss (Eloss) of 0.514 eV and the formation of a favorable morphology. This study highlights the considerable promise of the 2CT unit in the progression of high-efficiency polymer donors with a reduced Eloss.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.