Meng Zhao, Kui Huang, Feifei Wen, Hui Xia, Bingyu Song
{"title":"Biochar reduces plasmid-mediated antibiotic resistance gene transfer in earthworm ecological filters for rural sewage treatment","authors":"Meng Zhao, Kui Huang, Feifei Wen, Hui Xia, Bingyu Song","doi":"10.1016/j.jhazmat.2025.137230","DOIUrl":null,"url":null,"abstract":"The spread of antibiotic resistance genes (ARGs) in rural wastewater threatens both ecological environment and human health. Earthworm ecological filters (EEFs) represent a green technology for rural sewage treatment. However, their effectiveness in removing ARGs remains a significant challenge. This study aims to investigate the role and underlying mechanisms of biochar addition in enhancing ARGs removal in rural sewage using EEFs. To achieve this, the fate of chromosome- and plasmid-carried ARGs was quantified in constructed EEFs, both with and without biochar addition. The results showed that the biochar could effectively remove ARGs from rural sewage, with a better removal efficiency for plasmid-carried ARGs. The absolute abundance of plasmid-carried ARGs in the effluent was reduced by 0.4 to 11 times compared to chromosomal ones, showing removal stability improved by 13.11% to 74.51%. Additionally, the functional microbial community attached on the high porosity of biochar surface promoted ARGs retention, increasing diffusion limitation in microbial assembly mechanisms by 4.61-29.44%, which played a key role in plasmid-mediated horizontal gene transfer (HGT). Partial least squares structural equation modeling (PLS-SEM) revealed that biochar-mediated environmental changes and the HGT of mobile genetic elements (MGEs) were critical factors in reducing plasmid-carried ARGs in EEFs.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"31 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137230","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The spread of antibiotic resistance genes (ARGs) in rural wastewater threatens both ecological environment and human health. Earthworm ecological filters (EEFs) represent a green technology for rural sewage treatment. However, their effectiveness in removing ARGs remains a significant challenge. This study aims to investigate the role and underlying mechanisms of biochar addition in enhancing ARGs removal in rural sewage using EEFs. To achieve this, the fate of chromosome- and plasmid-carried ARGs was quantified in constructed EEFs, both with and without biochar addition. The results showed that the biochar could effectively remove ARGs from rural sewage, with a better removal efficiency for plasmid-carried ARGs. The absolute abundance of plasmid-carried ARGs in the effluent was reduced by 0.4 to 11 times compared to chromosomal ones, showing removal stability improved by 13.11% to 74.51%. Additionally, the functional microbial community attached on the high porosity of biochar surface promoted ARGs retention, increasing diffusion limitation in microbial assembly mechanisms by 4.61-29.44%, which played a key role in plasmid-mediated horizontal gene transfer (HGT). Partial least squares structural equation modeling (PLS-SEM) revealed that biochar-mediated environmental changes and the HGT of mobile genetic elements (MGEs) were critical factors in reducing plasmid-carried ARGs in EEFs.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.