Long-term response mechanism of bacterial communities to chemical oxidation remediation in petroleum hydrocarbon contaminated groundwater

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2025-01-15 DOI:10.1016/j.jhazmat.2025.137239
Wenjuan Jia, Zhimao Deng, Marco Petrangeli Papini, Lirong Cheng, Naifu Jin, Dan Zhang, Zhengyan Li, Dayi Zhang, Yi Zhu, Aizhong Ding
{"title":"Long-term response mechanism of bacterial communities to chemical oxidation remediation in petroleum hydrocarbon contaminated groundwater","authors":"Wenjuan Jia, Zhimao Deng, Marco Petrangeli Papini, Lirong Cheng, Naifu Jin, Dan Zhang, Zhengyan Li, Dayi Zhang, Yi Zhu, Aizhong Ding","doi":"10.1016/j.jhazmat.2025.137239","DOIUrl":null,"url":null,"abstract":"The limited understanding of microbial response mechanism remains as a bottleneck to evaluate the long-term remediation effectiveness of <em>in situ</em> chemical oxidation in contaminated groundwater. In this study, we investigated long-term response of bacterial communities throughout five remediation stages of pre-oxidation, early-oxidation, late-oxidation, early-recovery and late-recovery. By analyzing bacterial biomass, taxa, diversity and metabolic functions, this work identified the consistently suppressed glyceraldehyde-3-phosphate dehydrogenase pathway and the enrichment of naphthalene degradation pathways for secondary products, suggesting persistent oxidation stress and enhanced microbial utilization of lower-molecular weight carbon sources at the oxidation and early-recovery stages. The dominant microbial clusters shifted from r-strategists to K-strategists and then back to r-strategists, indicating their higher degradation efficiency of petroleum hydrocarbons throughout the oxidation process. The changes in stability and stochastic assembly of bacterial communities during <em>in situ</em> chemical oxidation suggested that oxidative stress, carbon source addition and carbon source limitation as the main influential factors of bacterial community succession at the oxidation, early-recovery and late-recovery stage, respectively. Our findings highlighted the complex recovery and underlying mechanisms of groundwater bacterial communities during <em>in situ</em> chemical oxidation process, and provided valuable insights for effective and long-term site management after <em>in situ</em> chemical oxidation practices.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"23 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137239","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The limited understanding of microbial response mechanism remains as a bottleneck to evaluate the long-term remediation effectiveness of in situ chemical oxidation in contaminated groundwater. In this study, we investigated long-term response of bacterial communities throughout five remediation stages of pre-oxidation, early-oxidation, late-oxidation, early-recovery and late-recovery. By analyzing bacterial biomass, taxa, diversity and metabolic functions, this work identified the consistently suppressed glyceraldehyde-3-phosphate dehydrogenase pathway and the enrichment of naphthalene degradation pathways for secondary products, suggesting persistent oxidation stress and enhanced microbial utilization of lower-molecular weight carbon sources at the oxidation and early-recovery stages. The dominant microbial clusters shifted from r-strategists to K-strategists and then back to r-strategists, indicating their higher degradation efficiency of petroleum hydrocarbons throughout the oxidation process. The changes in stability and stochastic assembly of bacterial communities during in situ chemical oxidation suggested that oxidative stress, carbon source addition and carbon source limitation as the main influential factors of bacterial community succession at the oxidation, early-recovery and late-recovery stage, respectively. Our findings highlighted the complex recovery and underlying mechanisms of groundwater bacterial communities during in situ chemical oxidation process, and provided valuable insights for effective and long-term site management after in situ chemical oxidation practices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Current understanding of human bioaccumulation patterns and health effects of exposure to perfluorooctane sulfonate (PFOS) Unveiling the effect of W and Co on PbO resistance over FeCe catalyst for low-temperature NH3-SCR of NO Photocatalytic degradation of NO by MnO2 catalyst: The decisive relationship between crystal phase, morphology and activity Impact of sediment resuspension on near-bottom mercury dynamics: Insights from a Baltic Sea experiment Optimizing FeS crystallinity of sulfidated nZVI to enhance electron transport capacity for clothianidin efficient degradation:Regulation of biochar pyrolysis temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1