{"title":"Regulation of Zn2+ Desolvation Kinetics via Interfacial Hydrogen-Bond Network for a Highly Reversible Zn Metal Anode","authors":"Qi Yang, Li Guo, Zhenjie Liu, Jingyuan Wang, Haihan Luo, Xiaofeng Zhang, Qizhi He, Xueyi Chen, Meilin Li, Zihan Wang, Yue Jiang, Rongfeng Yuan, Zhuoxin Liu, Kai Zhang, Zhe Hu, Yang Huang","doi":"10.1016/j.ensm.2025.104028","DOIUrl":null,"url":null,"abstract":"The uniform plating on zinc metal anode (ZMA) is imperative for stable aqueous zinc-ion batteries (AZIBs). However, the sluggish desolvation of hydrated Zn<sup>2+</sup> is identified as the primary source of kinetic barriers in plating process, leading to dendrite growth and parasitic reaction. Herein, we introduce chitosan oligosaccharide (COS) as an interfacial hydrogen bond network constructor on ZMA surface to enhance the desolvation kinetics of hydrated Zn<sup>2+</sup>. Specifically, COS molecules preferentially adsorb on the ZMA surface, where desolvated H<sub>2</sub>O from plating process can be immobilized by the multiple hydroxyl groups of COS. In addition, COS molecules capture hydrated Zn<sup>2+</sup> through their amino groups, resulting in superior Zn<sup>2+</sup> transport capability. Consequently, the introduction of COS into Zn(OTF)<sub>2</sub> electrolyte enables a lower nucleation overpotential (358 mV) and activation energy (32.34 kJ mol<sup>-1</sup>) for plating. Such advantages further enable Zn||Zn symmetric battery to achieve a cycle life exceeding 1800 hours, Zn||Cu battery to realize a high Coulombic efficiency of 99.68%, and Zn||Zn<sub>x</sub>V<sub>2</sub>O<sub>5</sub> full battery to reach a considerable capacity retention of 83.56% over 1000 cycles. The application of interfacial hydrogen bond network provides a novel perspective for optimizing the desolvation of Zn<sup>2+</sup> plating on ZMAs.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"26 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The uniform plating on zinc metal anode (ZMA) is imperative for stable aqueous zinc-ion batteries (AZIBs). However, the sluggish desolvation of hydrated Zn2+ is identified as the primary source of kinetic barriers in plating process, leading to dendrite growth and parasitic reaction. Herein, we introduce chitosan oligosaccharide (COS) as an interfacial hydrogen bond network constructor on ZMA surface to enhance the desolvation kinetics of hydrated Zn2+. Specifically, COS molecules preferentially adsorb on the ZMA surface, where desolvated H2O from plating process can be immobilized by the multiple hydroxyl groups of COS. In addition, COS molecules capture hydrated Zn2+ through their amino groups, resulting in superior Zn2+ transport capability. Consequently, the introduction of COS into Zn(OTF)2 electrolyte enables a lower nucleation overpotential (358 mV) and activation energy (32.34 kJ mol-1) for plating. Such advantages further enable Zn||Zn symmetric battery to achieve a cycle life exceeding 1800 hours, Zn||Cu battery to realize a high Coulombic efficiency of 99.68%, and Zn||ZnxV2O5 full battery to reach a considerable capacity retention of 83.56% over 1000 cycles. The application of interfacial hydrogen bond network provides a novel perspective for optimizing the desolvation of Zn2+ plating on ZMAs.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.