Retrieving the Stability and Practical Performance of Activation-Unstable Mesoporous Zr(IV)-MOF for Highly Efficient Self-Calibrating Acidity Sensing

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-15 DOI:10.1002/anie.202422517
Feifan Lang, Lulu Zhang, Yang Li, Xiao-Juan Xi, Jiandong Pang, Wenjun Zheng, Hong-Cai Zhou, Xian-He Bu
{"title":"Retrieving the Stability and Practical Performance of Activation-Unstable Mesoporous Zr(IV)-MOF for Highly Efficient Self-Calibrating Acidity Sensing","authors":"Feifan Lang, Lulu Zhang, Yang Li, Xiao-Juan Xi, Jiandong Pang, Wenjun Zheng, Hong-Cai Zhou, Xian-He Bu","doi":"10.1002/anie.202422517","DOIUrl":null,"url":null,"abstract":"The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB). We applied two strategies: mixed-linker synthesis and linker installation. In the mixed-linker approach, we incorporated an auxiliary linker, TPTB, which resembles PPTB, during synthesis to improve the framework's stability. In the linker installation approach, we introduced a ditopic carboxylate linker (BPDC) into the coordination-unsaturated sites of NKM-809. These strategies produced stabilized derivatives, named NKM-808.X (X = χPPTB) and NKM-809-BPDC, which exhibit pH-responsive dual-wavelength fluorescence at distinct emission wavelengths. Remarkably, these emissions shift oppositely upon protonation and dissociation, distinguishing them as highly sensitive, self-calibrating acidity sensors. In NKM-809-BPDC, an additional quenching of the linker-emission (419 nm) minimizes inherent interference, enabling integrated quality and lifespan self-monitoring. Theoretical calculations identified transitions between (n, π*) and (π, π*) emission states during the sensing process and highlighted the role of a stable mesoporous network in achieving stronger protonation response. These findings showcase the potential of stabilized mesoporous MOFs for practical applications, alongside valuable insights into strategies for optimizing such materials.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"74 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422517","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB). We applied two strategies: mixed-linker synthesis and linker installation. In the mixed-linker approach, we incorporated an auxiliary linker, TPTB, which resembles PPTB, during synthesis to improve the framework's stability. In the linker installation approach, we introduced a ditopic carboxylate linker (BPDC) into the coordination-unsaturated sites of NKM-809. These strategies produced stabilized derivatives, named NKM-808.X (X = χPPTB) and NKM-809-BPDC, which exhibit pH-responsive dual-wavelength fluorescence at distinct emission wavelengths. Remarkably, these emissions shift oppositely upon protonation and dissociation, distinguishing them as highly sensitive, self-calibrating acidity sensors. In NKM-809-BPDC, an additional quenching of the linker-emission (419 nm) minimizes inherent interference, enabling integrated quality and lifespan self-monitoring. Theoretical calculations identified transitions between (n, π*) and (π, π*) emission states during the sensing process and highlighted the role of a stable mesoporous network in achieving stronger protonation response. These findings showcase the potential of stabilized mesoporous MOFs for practical applications, alongside valuable insights into strategies for optimizing such materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Yi-Hsin Liu Tailored Polymer-Inorganic Bilayer SEI with Proton Holder Feature for Aqueous Zn Metal Batteries Retrieving the Stability and Practical Performance of Activation-Unstable Mesoporous Zr(IV)-MOF for Highly Efficient Self-Calibrating Acidity Sensing An sp2 Carbon-Conjugated Covalent Organic Framework for Fusing Lipid Droplets and Engineered Macrophage Therapy Dendritic Platinum Nanoparticles Shielded by Pt-S PEGylation as Intracellular Reactors for Bioorthogonal Uncaging Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1