Ultrafast Synthesis of Nanoscale Metal Borides for Efficient Hydrogen Evolution

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-14 DOI:10.1002/anie.202425257
Tingting Liu, Chen Chen, Zonghua Pu, Qiufeng Huang, Jiadong Jiang, Min Han, Wei Chen, Guangtao Yu, Yuzhi Sun, Shengyun Huang, Qingjun Chen, Abdullah M. Al-Enizi, Ayman Nafady, Xueqin Mu, Shichun Mu
{"title":"Ultrafast Synthesis of Nanoscale Metal Borides for Efficient Hydrogen Evolution","authors":"Tingting Liu, Chen Chen, Zonghua Pu, Qiufeng Huang, Jiadong Jiang, Min Han, Wei Chen, Guangtao Yu, Yuzhi Sun, Shengyun Huang, Qingjun Chen, Abdullah M. Al-Enizi, Ayman Nafady, Xueqin Mu, Shichun Mu","doi":"10.1002/anie.202425257","DOIUrl":null,"url":null,"abstract":"Nanoscale metal borides, with exceptional physicochemical properties, have been attracted widespread attention. However, traditional synthesis methods of metal borides often lead to surface coking and large particle sizes. Herein, we have employed a flash Joule heating (FJH) technique to enable the ultrafast synthesis of metal boride nanomaterials. The synthesized materials encompass a wide range of diverse categories, including alkaline-earth metal borides (CaB6), transition metal borides (TiB2, VB2, CrB2, MoB, MoB2, MnB2, MnB4, FeB, CoB, NiB), noble-metal borides (RuB2, RuB1.1), and rare-earth metal borides (LaB6, CeB6). As an example, the RuB2 demonstrates highly desirable electrocatalytic performance for all-pH hydrogen evolution reaction (HER). Especially, under the acidic condition, it exhibits an overpotential as low as 15 mV at a current density of 10 mA cm-2, with a nearly 100% faradic efficiency. Additionally, in situ Raman spectra confirm that both Ru and B sites serve as active sites for the HER. Moreover, the stability of RuB2 can be further enhanced by optimizing the microenvironments of the anolyte composition (H+, K+). More importantly, the experimental and density functional theory (DFT) calculations reveal that the co-existence of H+ and K+ localized around the RuB2 plays a crucial role in further enhancing the stability.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"36 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202425257","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscale metal borides, with exceptional physicochemical properties, have been attracted widespread attention. However, traditional synthesis methods of metal borides often lead to surface coking and large particle sizes. Herein, we have employed a flash Joule heating (FJH) technique to enable the ultrafast synthesis of metal boride nanomaterials. The synthesized materials encompass a wide range of diverse categories, including alkaline-earth metal borides (CaB6), transition metal borides (TiB2, VB2, CrB2, MoB, MoB2, MnB2, MnB4, FeB, CoB, NiB), noble-metal borides (RuB2, RuB1.1), and rare-earth metal borides (LaB6, CeB6). As an example, the RuB2 demonstrates highly desirable electrocatalytic performance for all-pH hydrogen evolution reaction (HER). Especially, under the acidic condition, it exhibits an overpotential as low as 15 mV at a current density of 10 mA cm-2, with a nearly 100% faradic efficiency. Additionally, in situ Raman spectra confirm that both Ru and B sites serve as active sites for the HER. Moreover, the stability of RuB2 can be further enhanced by optimizing the microenvironments of the anolyte composition (H+, K+). More importantly, the experimental and density functional theory (DFT) calculations reveal that the co-existence of H+ and K+ localized around the RuB2 plays a crucial role in further enhancing the stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效析氢的纳米金属硼化物的超快合成
纳米金属硼化物以其独特的物理化学性质引起了人们的广泛关注。然而,传统的金属硼化物合成方法往往导致表面结焦,颗粒尺寸大。在此,我们采用了闪焦耳加热(FJH)技术来实现金属硼化物纳米材料的超快合成。合成的材料种类繁多,包括碱土金属硼化物(CaB6)、过渡金属硼化物(TiB2、VB2、CrB2、MoB、MoB2、MnB2、MnB4、FeB、CoB、NiB)、贵金属硼化物(RuB2、RuB1.1)和稀土金属硼化物(LaB6、CeB6)。作为一个例子,RuB2在全ph析氢反应(HER)中表现出非常理想的电催化性能。特别是在酸性条件下,在电流密度为10 mA cm-2时,其过电位低至15 mV,具有接近100%的法拉第效率。此外,原位拉曼光谱证实Ru和B位点都是HER的活性位点。此外,通过优化阳极液组成(H+, K+)的微环境,可以进一步增强RuB2的稳定性。更重要的是,实验和密度泛函理论(DFT)计算表明,定域在RuB2周围的H+和K+的共存对进一步提高稳定性起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Circularly Polarized Ultraviolet Light-Activated Asymmetric Photopolymerization for the Synthesis of CPL-Active Materials Rapid, Precise and Robust Supramolecular Polymerization from Functional Oligomeric-Charged Poly(3-hexylthiophene) Amphiphiles Concentrated Chloride Electrolytes Enable High-Efficiency, Long-Cycling, and Dendrite-Free Aqueous Trivalent Antimony Batteries Precise PBAEs: A Highly Efficient Single-Molecularly Defined Gene-Delivery System Precise Tuning of Functional Group Spatial Distribution on Porphyrin Rings for Enhanced CO2 Electroreduction Selectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1