Rong Ma, Yan Chang, Qimingxing Chen, Jiangfeng Li, Bo Qiao
{"title":"Precise PBAEs: A Highly Efficient Single-Molecularly Defined Gene-Delivery System","authors":"Rong Ma, Yan Chang, Qimingxing Chen, Jiangfeng Li, Bo Qiao","doi":"10.1002/anie.202422134","DOIUrl":null,"url":null,"abstract":"Gene-delivery polymers have wide therapeutic applications. The structures (e.g., molecular weight, polymer sequence, end groups, and topology) of gene-delivery polymers are of crucial importance to their properties including transfection efficiency, toxicity, and targeting capability. Thus, precise control over the structures of gene-delivery polymers is extremely beneficial for property optimizations and manufacturing reproducibility. However, sequence-defined gene-delivery polymers with high efficiency and low toxicity are rare, limited by synthetic strategies. In this work, we developed a method that enables poly(beta-amino esters), one of the most promising gene-delivery polymers, to be synthesized with precisely controlled and vastly variable molecular weight, end group, and topology. This synthetic strategy creates a new family of gene-delivery polymers with defined structures, offering significant potentials and revealing new design principles.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"36 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422134","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene-delivery polymers have wide therapeutic applications. The structures (e.g., molecular weight, polymer sequence, end groups, and topology) of gene-delivery polymers are of crucial importance to their properties including transfection efficiency, toxicity, and targeting capability. Thus, precise control over the structures of gene-delivery polymers is extremely beneficial for property optimizations and manufacturing reproducibility. However, sequence-defined gene-delivery polymers with high efficiency and low toxicity are rare, limited by synthetic strategies. In this work, we developed a method that enables poly(beta-amino esters), one of the most promising gene-delivery polymers, to be synthesized with precisely controlled and vastly variable molecular weight, end group, and topology. This synthetic strategy creates a new family of gene-delivery polymers with defined structures, offering significant potentials and revealing new design principles.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.