A generalized diffusion model for remaining useful life prediction with uncertainty

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2025-01-15 DOI:10.1007/s40747-024-01773-w
Bincheng Wen, Xin Zhao, Xilang Tang, Mingqing Xiao, Haizhen Zhu, Jianfeng Li
{"title":"A generalized diffusion model for remaining useful life prediction with uncertainty","authors":"Bincheng Wen, Xin Zhao, Xilang Tang, Mingqing Xiao, Haizhen Zhu, Jianfeng Li","doi":"10.1007/s40747-024-01773-w","DOIUrl":null,"url":null,"abstract":"<p>Forecasting the remaining useful life (RUL) is a crucial aspect of prognostics and health management (PHM), which has garnered significant attention in academic and industrial domains in recent decades. The accurate prediction of RUL relies on the creation of an appropriate degradation model for the system. In this paper, a general representation of diffusion process models with three sources of uncertainty for RUL estimation is constructed. According to time-space transformation, the analytic equations that approximate the RUL probability distribution function (PDF) are inferred. The results demonstrate that the proposed model is more general, covering several existing simplified cases. The parameters of the model are then calculated utilizing an adaptive technique based on the Kalman filter and expectation maximization with Rauch-Tung-Striebel (KF-EM-RTS). KF-EM-RTS can adaptively estimate and update unknown parameters, overcoming the limits of strong Markovian nature of diffusion model. Linear and nonlinear degradation datasets from real working environments are used to validate the proposed model. The experiments indicate that the proposed model can achieve accurate RUL estimation results.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01773-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting the remaining useful life (RUL) is a crucial aspect of prognostics and health management (PHM), which has garnered significant attention in academic and industrial domains in recent decades. The accurate prediction of RUL relies on the creation of an appropriate degradation model for the system. In this paper, a general representation of diffusion process models with three sources of uncertainty for RUL estimation is constructed. According to time-space transformation, the analytic equations that approximate the RUL probability distribution function (PDF) are inferred. The results demonstrate that the proposed model is more general, covering several existing simplified cases. The parameters of the model are then calculated utilizing an adaptive technique based on the Kalman filter and expectation maximization with Rauch-Tung-Striebel (KF-EM-RTS). KF-EM-RTS can adaptively estimate and update unknown parameters, overcoming the limits of strong Markovian nature of diffusion model. Linear and nonlinear degradation datasets from real working environments are used to validate the proposed model. The experiments indicate that the proposed model can achieve accurate RUL estimation results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定剩余使用寿命预测的广义扩散模型
预测剩余使用寿命(RUL)是预测和健康管理(PHM)的一个重要方面,近几十年来在学术界和工业界引起了极大的关注。RUL的准确预测依赖于为系统创建适当的退化模型。本文构造了具有三种不确定源的扩散过程模型的一般表示,用于RUL估计。根据时空变换,推导出近似RUL概率分布函数(PDF)的解析方程。结果表明,该模型具有较好的通用性,涵盖了几种已有的简化情况。然后利用基于卡尔曼滤波和Rauch-Tung-Striebel (KF-EM-RTS)期望最大化的自适应技术计算模型的参数。KF-EM-RTS能够自适应估计和更新未知参数,克服了扩散模型强马尔可夫性的限制。利用实际工作环境的线性和非线性退化数据集验证了所提出的模型。实验结果表明,该模型能够获得准确的RUL估计结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
A low-carbon scheduling method based on improved ant colony algorithm for underground electric transportation vehicles Vehicle positioning systems in tunnel environments: a review A survey of security threats in federated learning Barriers and enhance strategies for green supply chain management using continuous linear diophantine neural networks XTNSR: Xception-based transformer network for single image super resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1