XTNSR: Xception-based transformer network for single image super resolution

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2025-01-25 DOI:10.1007/s40747-024-01760-1
Jagrati Talreja, Supavadee Aramvith, Takao Onoye
{"title":"XTNSR: Xception-based transformer network for single image super resolution","authors":"Jagrati Talreja, Supavadee Aramvith, Takao Onoye","doi":"10.1007/s40747-024-01760-1","DOIUrl":null,"url":null,"abstract":"<p>Single image super resolution has significantly advanced by utilizing transformers-based deep learning algorithms. However, challenges still need to be addressed in handling grid-like image patches with higher computational demands and addressing issues like over-smoothing in visual patches. This paper presents a Deep Learning model for single-image super-resolution. In this paper, we present the XTNSR model, a novel multi-path network architecture that combines Local feature window transformers (LWFT) with Xception blocks for single-image super-resolution. The model processes grid-like image patches effectively and reduces computational complexity by integrating a Patch Embedding layer. Whereas the Xception blocks use depth-wise separable convolutions for hierarchical feature extraction, the LWFT blocks capture long-range dependencies and fine-grained qualities. A multi-layer feature fusion block with skip connections, part of this hybrid architecture, guarantees efficient local and global feature fusion. The experimental results show better performance in Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and visual quality than the state-of-the-art techniques. By optimizing parameters, the suggested architecture also lowers computational complexity. Overall, the architecture presents a promising approach for advancing image super-resolution capabilities.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"35 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01760-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Single image super resolution has significantly advanced by utilizing transformers-based deep learning algorithms. However, challenges still need to be addressed in handling grid-like image patches with higher computational demands and addressing issues like over-smoothing in visual patches. This paper presents a Deep Learning model for single-image super-resolution. In this paper, we present the XTNSR model, a novel multi-path network architecture that combines Local feature window transformers (LWFT) with Xception blocks for single-image super-resolution. The model processes grid-like image patches effectively and reduces computational complexity by integrating a Patch Embedding layer. Whereas the Xception blocks use depth-wise separable convolutions for hierarchical feature extraction, the LWFT blocks capture long-range dependencies and fine-grained qualities. A multi-layer feature fusion block with skip connections, part of this hybrid architecture, guarantees efficient local and global feature fusion. The experimental results show better performance in Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and visual quality than the state-of-the-art techniques. By optimizing parameters, the suggested architecture also lowers computational complexity. Overall, the architecture presents a promising approach for advancing image super-resolution capabilities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
A low-carbon scheduling method based on improved ant colony algorithm for underground electric transportation vehicles Vehicle positioning systems in tunnel environments: a review A survey of security threats in federated learning Barriers and enhance strategies for green supply chain management using continuous linear diophantine neural networks XTNSR: Xception-based transformer network for single image super resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1