{"title":"XTNSR: Xception-based transformer network for single image super resolution","authors":"Jagrati Talreja, Supavadee Aramvith, Takao Onoye","doi":"10.1007/s40747-024-01760-1","DOIUrl":null,"url":null,"abstract":"<p>Single image super resolution has significantly advanced by utilizing transformers-based deep learning algorithms. However, challenges still need to be addressed in handling grid-like image patches with higher computational demands and addressing issues like over-smoothing in visual patches. This paper presents a Deep Learning model for single-image super-resolution. In this paper, we present the XTNSR model, a novel multi-path network architecture that combines Local feature window transformers (LWFT) with Xception blocks for single-image super-resolution. The model processes grid-like image patches effectively and reduces computational complexity by integrating a Patch Embedding layer. Whereas the Xception blocks use depth-wise separable convolutions for hierarchical feature extraction, the LWFT blocks capture long-range dependencies and fine-grained qualities. A multi-layer feature fusion block with skip connections, part of this hybrid architecture, guarantees efficient local and global feature fusion. The experimental results show better performance in Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and visual quality than the state-of-the-art techniques. By optimizing parameters, the suggested architecture also lowers computational complexity. Overall, the architecture presents a promising approach for advancing image super-resolution capabilities.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"35 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01760-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Single image super resolution has significantly advanced by utilizing transformers-based deep learning algorithms. However, challenges still need to be addressed in handling grid-like image patches with higher computational demands and addressing issues like over-smoothing in visual patches. This paper presents a Deep Learning model for single-image super-resolution. In this paper, we present the XTNSR model, a novel multi-path network architecture that combines Local feature window transformers (LWFT) with Xception blocks for single-image super-resolution. The model processes grid-like image patches effectively and reduces computational complexity by integrating a Patch Embedding layer. Whereas the Xception blocks use depth-wise separable convolutions for hierarchical feature extraction, the LWFT blocks capture long-range dependencies and fine-grained qualities. A multi-layer feature fusion block with skip connections, part of this hybrid architecture, guarantees efficient local and global feature fusion. The experimental results show better performance in Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and visual quality than the state-of-the-art techniques. By optimizing parameters, the suggested architecture also lowers computational complexity. Overall, the architecture presents a promising approach for advancing image super-resolution capabilities.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.