Yinghan Hong, Fangqing Liu, Han Huang, Yi Xiang, Xueming Yan, Guizhen Mai
{"title":"Microscale search-based algorithm based on time-space transfer for automated test case generation","authors":"Yinghan Hong, Fangqing Liu, Han Huang, Yi Xiang, Xueming Yan, Guizhen Mai","doi":"10.1007/s40747-024-01706-7","DOIUrl":null,"url":null,"abstract":"<p>Automated test case generation for path coverage (ATCG-PC) is a major challenge in search-based software engineering due to its complexity as a large-scale black-box optimization problem. However, existing search-based approaches often fail to achieve high path coverage in large-scale unit programs. This is due to their expansive decision space and the presence of hundreds of feasible paths. In this paper, we present a microscale (small-size subsets of the decomposed decision set) search-based algorithm with time-space transfer (MISA-TST). This algorithm aims to identify more accurate subspaces consisting of optimal solutions based on two strategies. The dimension partition strategy employs a relationship matrix to track subspaces corresponding to the target paths. Additionally, the specific value strategy allows MISA-TST to focus the search on the neighborhood of specific dimension values rather than the entire dimension space. Experiments conducted on nine normal-scale and six large-scale benchmarks demonstrate the effectiveness of MISA-TST. The large-scale unit programs encompass hundreds of feasible paths or more than 1.00E+50 test cases. The results show that MISA-TST achieves significantly higher path coverage than other state-of-the-art algorithms in most benchmarks. Furthermore, the combination of the two time-space transfer strategies significantly enhances the performance of search-based algorithms like MISA, especially in large-scale unit programs.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"12 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01706-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Automated test case generation for path coverage (ATCG-PC) is a major challenge in search-based software engineering due to its complexity as a large-scale black-box optimization problem. However, existing search-based approaches often fail to achieve high path coverage in large-scale unit programs. This is due to their expansive decision space and the presence of hundreds of feasible paths. In this paper, we present a microscale (small-size subsets of the decomposed decision set) search-based algorithm with time-space transfer (MISA-TST). This algorithm aims to identify more accurate subspaces consisting of optimal solutions based on two strategies. The dimension partition strategy employs a relationship matrix to track subspaces corresponding to the target paths. Additionally, the specific value strategy allows MISA-TST to focus the search on the neighborhood of specific dimension values rather than the entire dimension space. Experiments conducted on nine normal-scale and six large-scale benchmarks demonstrate the effectiveness of MISA-TST. The large-scale unit programs encompass hundreds of feasible paths or more than 1.00E+50 test cases. The results show that MISA-TST achieves significantly higher path coverage than other state-of-the-art algorithms in most benchmarks. Furthermore, the combination of the two time-space transfer strategies significantly enhances the performance of search-based algorithms like MISA, especially in large-scale unit programs.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.