Computational and AI-Driven Design of Hydrogels for Bioelectronic Applications

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2025-01-14 DOI:10.1002/aelm.202400763
Rebekah Finster, Prashant Sankaran, Eloise Bihar
{"title":"Computational and AI-Driven Design of Hydrogels for Bioelectronic Applications","authors":"Rebekah Finster, Prashant Sankaran, Eloise Bihar","doi":"10.1002/aelm.202400763","DOIUrl":null,"url":null,"abstract":"As hydrogel research progresses, hydrogels are becoming essential tools in bioelectronics and biotechnology. This review explores the diverse range of natural and synthetic gel materials tailored for specific bioelectronic applications, with a focus on their integration with electronic components to create responsive, multifunctional systems. The role of Artificial Intelligence (AI) in advancing gel design and functionality from optimizing material properties to enabling precise, predictive modeling is investigated. Furthermore, recent innovations that harness the synergy between hydrogels, electronics, and AI are discussed, emphasizing the potential of these materials to drive future advances in biomedical technologies. AI-driven approaches are transforming the development of hydrogels for applications in wound healing, biosensing, drug delivery, and tissue engineering.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"49 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400763","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As hydrogel research progresses, hydrogels are becoming essential tools in bioelectronics and biotechnology. This review explores the diverse range of natural and synthetic gel materials tailored for specific bioelectronic applications, with a focus on their integration with electronic components to create responsive, multifunctional systems. The role of Artificial Intelligence (AI) in advancing gel design and functionality from optimizing material properties to enabling precise, predictive modeling is investigated. Furthermore, recent innovations that harness the synergy between hydrogels, electronics, and AI are discussed, emphasizing the potential of these materials to drive future advances in biomedical technologies. AI-driven approaches are transforming the development of hydrogels for applications in wound healing, biosensing, drug delivery, and tissue engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物电子应用水凝胶的计算和人工智能驱动设计
随着水凝胶研究的不断深入,水凝胶已成为生物电子学和生物技术研究的重要工具。这篇综述探讨了为特定生物电子应用量身定制的各种天然和合成凝胶材料,重点是它们与电子元件的集成,以创建响应性强的多功能系统。研究了人工智能(AI)在推进凝胶设计和功能方面的作用,从优化材料特性到实现精确的预测建模。此外,还讨论了利用水凝胶、电子和人工智能之间协同作用的最新创新,强调了这些材料推动生物医学技术未来进步的潜力。人工智能驱动的方法正在改变水凝胶在伤口愈合、生物传感、药物输送和组织工程方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
High-Throughput Production of Electrically Conductive Yarn (E-Yarn) for Smart Textiles Edge of Chaos Theory Unveils the First and Simplest Ever Reported Hodgkin–Huxley Neuristor Ge N-Channel Ferroelectric FET Memory With Al2O3/AlN Interfacial Layer by Microwave Annealing Encapsulated Organohydrogel Couplants for Wearable Ultrasounds Improved Magnetoresistance of Tungsten Telluride and Silver Telluride Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1