Markus M Hoffmann, Torsten Gutmann, Gerd Buntkowsky
{"title":"Thermal Behavior of <i>n</i>-Octanol and Related Ether Alcohols.","authors":"Markus M Hoffmann, Torsten Gutmann, Gerd Buntkowsky","doi":"10.1021/acs.jced.4c00525","DOIUrl":null,"url":null,"abstract":"<p><p>The thermal behavior of <i>n</i>-octanol and related ether alcohols has been studied by differential scanning calorimetry (DSC). The melting point, heat of fusion, and isobaric heat capacities of <i>n</i>-octanol obtained from the DSC measurements are in good agreement with literature values. The ether alcohols display kinetic barriers for forming a solid phase during cooldown. These barriers are least for 6-methoxyhexanol that forms a solid upon cooling except for the highest measured temperature change rate of 40 K·min<sup>-1</sup>, followed by 4-propoxybutanol that forms a solid during cooldown only at low cooling rates. 2-Pentoxyethanol and 5-ethoxypentanol form a solid during the heating cycle that then melts again upon further heating. 3-Butoxypropanol does not display any exo- and endothermic features for all measured temperature change rates. Consequently, new data on melting point and heats of fusion are reported for the ether alcohols except for 3-butoxypropanol. New isobaric heat capacities are presented as well for the liquid phase of these ether alcohols.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"70 1","pages":"600-606"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jced.4c00525","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The thermal behavior of n-octanol and related ether alcohols has been studied by differential scanning calorimetry (DSC). The melting point, heat of fusion, and isobaric heat capacities of n-octanol obtained from the DSC measurements are in good agreement with literature values. The ether alcohols display kinetic barriers for forming a solid phase during cooldown. These barriers are least for 6-methoxyhexanol that forms a solid upon cooling except for the highest measured temperature change rate of 40 K·min-1, followed by 4-propoxybutanol that forms a solid during cooldown only at low cooling rates. 2-Pentoxyethanol and 5-ethoxypentanol form a solid during the heating cycle that then melts again upon further heating. 3-Butoxypropanol does not display any exo- and endothermic features for all measured temperature change rates. Consequently, new data on melting point and heats of fusion are reported for the ether alcohols except for 3-butoxypropanol. New isobaric heat capacities are presented as well for the liquid phase of these ether alcohols.
期刊介绍:
The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.