Amide Internucleoside Linkages Suppress the MicroRNA-like Off-Target Activity of Short Interfering RNA.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2025-01-15 DOI:10.1021/acschembio.4c00824
Chandan Pal, Michael Richter, Jayamini Harasgama, Eriks Rozners
{"title":"Amide Internucleoside Linkages Suppress the MicroRNA-like Off-Target Activity of Short Interfering RNA.","authors":"Chandan Pal, Michael Richter, Jayamini Harasgama, Eriks Rozners","doi":"10.1021/acschembio.4c00824","DOIUrl":null,"url":null,"abstract":"<p><p>RNA interference (RNAi) has rapidly matured as a novel therapeutic approach. In this field, chemical modifications have been critical to the clinical success of short interfering RNAs (siRNAs). Notwithstanding the significant advances, achieving robust durability and gene silencing in extrahepatic tissues, as well as reducing off-target effects of siRNA, are areas where chemical modifications can still improve siRNA performance. The present study developed the challenging synthesis of amide-linked guanosine dimers (G<sub>AM1</sub>G and G<sub>AM1</sub>A) and completed an \"amide walk\" one by one, systematically replacing every internucleoside phosphate with an amide linkage in a guide strand targeting the PIK3CB gene. Dual-luciferase and RT-qPCR assays in HeLa cells showed that, in a model system of unmodified siRNAs, the amide linkage at position 3 (between nucleosides 3 and 4) suppressed the cleavage of off-target YY1 and FADD mRNAs similarly to the industry gold standard modification glycol nucleic acid (GNA). These results suggest that amide linkages in the seed region have strong potential to improve the specificity of siRNAs by suppressing the microRNA-like off-target activity.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00824","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA interference (RNAi) has rapidly matured as a novel therapeutic approach. In this field, chemical modifications have been critical to the clinical success of short interfering RNAs (siRNAs). Notwithstanding the significant advances, achieving robust durability and gene silencing in extrahepatic tissues, as well as reducing off-target effects of siRNA, are areas where chemical modifications can still improve siRNA performance. The present study developed the challenging synthesis of amide-linked guanosine dimers (GAM1G and GAM1A) and completed an "amide walk" one by one, systematically replacing every internucleoside phosphate with an amide linkage in a guide strand targeting the PIK3CB gene. Dual-luciferase and RT-qPCR assays in HeLa cells showed that, in a model system of unmodified siRNAs, the amide linkage at position 3 (between nucleosides 3 and 4) suppressed the cleavage of off-target YY1 and FADD mRNAs similarly to the industry gold standard modification glycol nucleic acid (GNA). These results suggest that amide linkages in the seed region have strong potential to improve the specificity of siRNAs by suppressing the microRNA-like off-target activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Amide Internucleoside Linkages Suppress the MicroRNA-like Off-Target Activity of Short Interfering RNA. Mapping snoRNA Targets Transcriptome-Wide with snoKARR-seq. Multi-TACs: Targeting Solid Tumors with Multiple Immune Cell Co-engagers. A Small-Molecule Inhibitor of Gut Bacterial Urease Protects the Host from Liver Injury. The Relationship between Substrate Structure and Selectivity of Ketoreduction in Multimodular Polyketide Synthases: A Comparative Study of A-Type Ketoreductases from Late Modules Using Complex Precursor Analogues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1