Ronnie Mooney, Kiri Rodgers, Sandro Carnicelli, Matías E Carnevale, Maria Eugenia Farias, Fiona L Henriquez
{"title":"Isolation of Acanthamoeba Species and Bacterial Symbiont Variability in Puna Salt Plains, Argentina.","authors":"Ronnie Mooney, Kiri Rodgers, Sandro Carnicelli, Matías E Carnevale, Maria Eugenia Farias, Fiona L Henriquez","doi":"10.1111/1758-2229.70059","DOIUrl":null,"url":null,"abstract":"<p><p>Acanthamoeba spp. are widespread protists that feed on bacteria via phagocytosis. This predation pressure has led many bacteria to evolve strategies to resist and survive inside these protists. The impact of this is not well understood, but it may limit detection and allow survival in extreme environments. Three sites in the Puna salt plains, Catamarca province, Argentina, were sampled for Acanthamoeba spp., verified using PCR and Sanger sequencing. The intracellular microbiome was analysed with 16S rRNA gene sequencing and compared to the overall site microbiome. Acanthamoeba were found at all locations, and their intracellular microbiome was similar across samples but differed from the overall site microbiome. Pseudomonas spp., a clinically relevant genus, was most abundant in all isolates. This study suggests Acanthamoeba can protect bacteria, aiding their detection avoidance and survival in harsh conditions.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 1","pages":"e70059"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1758-2229.70059","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Acanthamoeba spp. are widespread protists that feed on bacteria via phagocytosis. This predation pressure has led many bacteria to evolve strategies to resist and survive inside these protists. The impact of this is not well understood, but it may limit detection and allow survival in extreme environments. Three sites in the Puna salt plains, Catamarca province, Argentina, were sampled for Acanthamoeba spp., verified using PCR and Sanger sequencing. The intracellular microbiome was analysed with 16S rRNA gene sequencing and compared to the overall site microbiome. Acanthamoeba were found at all locations, and their intracellular microbiome was similar across samples but differed from the overall site microbiome. Pseudomonas spp., a clinically relevant genus, was most abundant in all isolates. This study suggests Acanthamoeba can protect bacteria, aiding their detection avoidance and survival in harsh conditions.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.