"Three-in-one" Analysis of Proteinuria for Disease Diagnosis through Multifunctional Nanoparticles and Machine Learning.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-01-15 DOI:10.1002/advs.202410751
Yidan Wang, Jiazhu Sun, Jiuhong Yi, Ruijie Fu, Ben Liu, Yunlei Xianyu
{"title":"\"Three-in-one\" Analysis of Proteinuria for Disease Diagnosis through Multifunctional Nanoparticles and Machine Learning.","authors":"Yidan Wang, Jiazhu Sun, Jiuhong Yi, Ruijie Fu, Ben Liu, Yunlei Xianyu","doi":"10.1002/advs.202410751","DOIUrl":null,"url":null,"abstract":"<p><p>Urinalysis is one of the predominant tools for clinical testing owing to the abundant composition, sufficient volume, and non-invasive acquisition of urine. As a critical component of routine urinalysis, urine protein testing measures the levels and types of proteins, enabling the early diagnosis of diseases. Traditional methods require three separate steps including strip testing, protein/creatinine ratio measurement, and electrophoresis respectively to achieve qualitative, quantitative, and classification analyses of proteins in urine with long time and cumbersome operations. Herein, this work demonstrates a \"three-in-one\" protocol to analyze the urine composition by combining multifunctional nanoparticles with machine learning. This work constructs a sensor array to analyze proteinuria by employing nanoparticles with unique optical properties, outstanding catalytic activity, diverse composition, and tunable structure as probes. Different proteins interacted with nanoprobes differently and are classified by this sensor array based on their physicochemical heterogeneities. With the aid of machine learning, the urine composition is precisely detected for the diagnosis of bladder cancer. This protocol enables quantification and classification of 5 proteinuria in 10 min without any tedious pretreatment, showing proimise for the comprehensive analysis of body fluid for early disease diagnosis.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410751"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410751","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Urinalysis is one of the predominant tools for clinical testing owing to the abundant composition, sufficient volume, and non-invasive acquisition of urine. As a critical component of routine urinalysis, urine protein testing measures the levels and types of proteins, enabling the early diagnosis of diseases. Traditional methods require three separate steps including strip testing, protein/creatinine ratio measurement, and electrophoresis respectively to achieve qualitative, quantitative, and classification analyses of proteins in urine with long time and cumbersome operations. Herein, this work demonstrates a "three-in-one" protocol to analyze the urine composition by combining multifunctional nanoparticles with machine learning. This work constructs a sensor array to analyze proteinuria by employing nanoparticles with unique optical properties, outstanding catalytic activity, diverse composition, and tunable structure as probes. Different proteins interacted with nanoprobes differently and are classified by this sensor array based on their physicochemical heterogeneities. With the aid of machine learning, the urine composition is precisely detected for the diagnosis of bladder cancer. This protocol enables quantification and classification of 5 proteinuria in 10 min without any tedious pretreatment, showing proimise for the comprehensive analysis of body fluid for early disease diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Functionally Graded Oxide Scale on (Hf,Zr,Ti)B2 Coating with Exceptional Ablation Resistance Induced by Unique Ti Dissolving. In Vivo Nanodiamond Quantum Sensing of Free Radicals in Caenorhabditis elegans Models. Modulation of RuO2 Nanocrystals with Facile Annealing Method for Enhancing the Electrocatalytic Activity on Overall Water Splitting in Acid Solution. "Three-in-one" Analysis of Proteinuria for Disease Diagnosis through Multifunctional Nanoparticles and Machine Learning. Constructing Activatable Photosensitizers Using Covalently Modified Mesoporous Silica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1