Highly sensitive temperature sensors based on the fluorescence intensity ratio of dual-emissive lead-free metal halides.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2025-01-15 DOI:10.1039/d4mh01369g
Jianhui Zhao, Yunsong Di, Yuhang Sheng, Jiaxin Sui, Xingru Yang, Yi Zhang, Ying Wang, Haoyu Wang, Xiaowei Zhang, Liyan Yu, Zhihui Chen, Zhixing Gan
{"title":"Highly sensitive temperature sensors based on the fluorescence intensity ratio of dual-emissive lead-free metal halides.","authors":"Jianhui Zhao, Yunsong Di, Yuhang Sheng, Jiaxin Sui, Xingru Yang, Yi Zhang, Ying Wang, Haoyu Wang, Xiaowei Zhang, Liyan Yu, Zhihui Chen, Zhixing Gan","doi":"10.1039/d4mh01369g","DOIUrl":null,"url":null,"abstract":"<p><p>Given that optical thermometers are widely used due to their unique advantages, this study aims to address critical challenges in existing technologies, such as insufficient sensitivity, limited temperature measurement ranges, and poor signal recognition capabilities. Herein, we develop a thermometer based on the fluorescence intensity ratio (FIR) of Sb-doped Cs<sub>2</sub>NaInCl<sub>6</sub> (Cs<sub>2</sub>NaInCl<sub>6</sub>:Sb). As the temperature increases from 203 to 323 K, the thermally induced transition from triplet to singlet self-trapped excitons (STEs) leads to enhanced 455 nm photoluminescence (PL) from singlet STE recombination. Thus, the FIR monotonically depends on temperature, allowing for temperature sensing with a high absolute sensitivity (<i>S</i><sub>A</sub>) of 0.0575 K<sup>-1</sup> and the maximum relative sensitivity (<i>S</i><sub>R</sub>) of 1.005% K<sup>-1</sup>. We demonstrate that spatial temperature distribution can be measured by mapping the PL spectra, even with a transparent medium screening the target. Furthermore, blue emissive Cs<sub>2</sub>NaInCl<sub>6</sub>:Sb is mixed with yellow emissive Cs<sub>2</sub>AgInCl<sub>6</sub>:Sb with a thermal quenching feature. The fluorescence color of the mixture dramatically depends on temperature, enabling a user-friendly colorimetric temperature sensing. Therefore, two operational modes are proposed to meet various practical application demands.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01369g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given that optical thermometers are widely used due to their unique advantages, this study aims to address critical challenges in existing technologies, such as insufficient sensitivity, limited temperature measurement ranges, and poor signal recognition capabilities. Herein, we develop a thermometer based on the fluorescence intensity ratio (FIR) of Sb-doped Cs2NaInCl6 (Cs2NaInCl6:Sb). As the temperature increases from 203 to 323 K, the thermally induced transition from triplet to singlet self-trapped excitons (STEs) leads to enhanced 455 nm photoluminescence (PL) from singlet STE recombination. Thus, the FIR monotonically depends on temperature, allowing for temperature sensing with a high absolute sensitivity (SA) of 0.0575 K-1 and the maximum relative sensitivity (SR) of 1.005% K-1. We demonstrate that spatial temperature distribution can be measured by mapping the PL spectra, even with a transparent medium screening the target. Furthermore, blue emissive Cs2NaInCl6:Sb is mixed with yellow emissive Cs2AgInCl6:Sb with a thermal quenching feature. The fluorescence color of the mixture dramatically depends on temperature, enabling a user-friendly colorimetric temperature sensing. Therefore, two operational modes are proposed to meet various practical application demands.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Highly sensitive temperature sensors based on the fluorescence intensity ratio of dual-emissive lead-free metal halides. Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant. Stretchable wrinkle-structured liquid metal sandwich films enable strain-insensitive electromagnetic shielding and Joule heating. Structural relaxation chirality transfer enhanced circularly polarized luminescence in heteronuclear CeIII-MnII complexes. Moisture-responsive ultralow-hysteresis polymer ionogels for adhesion-switchable strain sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1