{"title":"Low molecular weight galactomannan alleviates diarrhea induced by senna leaf in mice <i>via</i> intestinal barrier improvement and gut microbiota modulation.","authors":"Jiayuan Bi, Xiaodan Fu, Yun Jiang, Jia Wang, Dongyu Li, Mengshi Xiao, Haijin Mou","doi":"10.1039/d4fo04375h","DOIUrl":null,"url":null,"abstract":"<p><p>Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo04375h","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.