Lazarus Andrew de Zhang, Mengjie Liu, Daniel J Scott, David K Chalmers
{"title":"Re-evaluation of Cyclic Peptide Binding to Neurotensin Receptor 1 by Shifting the Peptide Register during Synthesis.","authors":"Lazarus Andrew de Zhang, Mengjie Liu, Daniel J Scott, David K Chalmers","doi":"10.1021/acsmedchemlett.4c00542","DOIUrl":null,"url":null,"abstract":"<p><p>The head-to-tail cyclic peptide <i>cyclo</i>[Arg-Lys-Pro-Tyr-Tle-Leu] (peptide <b>1</b>, where Tle is l-<i>tert</i>-Leu) has previously been reported to bind to neurotensin receptor 1 (NTS1) (pKi = 5.97). Upon seeking to reproduce this finding, we found that peptide <b>1</b> did not have a measurable affinity for NTS1. However, a semipurified preparation of peptide <b>1</b> appeared to bind to NTS1 with pKi = 5.83 ± 0.25 SEM. Resynthesis of peptide <b>1</b> using a shifted peptide register gave linear and cyclic forms of peptide <b>1</b> that were both unable to bind to NTS1. We observe that the previously reported activity of peptide <b>1</b> may be due to the presence of high affinity linear contaminants. Approximately 3% contamination with the linear variant would explain the apparent binding of the semipure peptide <b>1</b> sample. From this study, we propose that shifting the peptide register during synthesis as a strategy to minimize the presence of potent precursor contaminants.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"157-162"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.4c00542","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The head-to-tail cyclic peptide cyclo[Arg-Lys-Pro-Tyr-Tle-Leu] (peptide 1, where Tle is l-tert-Leu) has previously been reported to bind to neurotensin receptor 1 (NTS1) (pKi = 5.97). Upon seeking to reproduce this finding, we found that peptide 1 did not have a measurable affinity for NTS1. However, a semipurified preparation of peptide 1 appeared to bind to NTS1 with pKi = 5.83 ± 0.25 SEM. Resynthesis of peptide 1 using a shifted peptide register gave linear and cyclic forms of peptide 1 that were both unable to bind to NTS1. We observe that the previously reported activity of peptide 1 may be due to the presence of high affinity linear contaminants. Approximately 3% contamination with the linear variant would explain the apparent binding of the semipure peptide 1 sample. From this study, we propose that shifting the peptide register during synthesis as a strategy to minimize the presence of potent precursor contaminants.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.