Synergistic effects of clays and cyanobacteria on the accumulation dynamics of soil organic carbon in artificial biocrusts.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2025-02-01 Epub Date: 2025-01-13 DOI:10.1016/j.jenvman.2025.124110
Cui Zhang, Xiaoran Chen, Keqiang Zhou, Jianbo Li, J Viridiana García Meza, Shaoxian Song, María Luciana Montes, Nasriddinov Zamoniddin, Ling Xia
{"title":"Synergistic effects of clays and cyanobacteria on the accumulation dynamics of soil organic carbon in artificial biocrusts.","authors":"Cui Zhang, Xiaoran Chen, Keqiang Zhou, Jianbo Li, J Viridiana García Meza, Shaoxian Song, María Luciana Montes, Nasriddinov Zamoniddin, Ling Xia","doi":"10.1016/j.jenvman.2025.124110","DOIUrl":null,"url":null,"abstract":"<p><p>Biocrusts are the primary organic carbon reservoirs in desert areas, in which inorganic clays potentially playing significant roles; however, the specific details of these roles remain largely unclear. In this study, typical 1:1 type (kaolin) and 2:1 type (montmorillonite, MMT) clay minerals were added to artificial biocrusts to investigate their effect on the acquisition performance of soil organic carbon (SOC). After 84 days of cultivation, the enhancement effects of kaolin and MMT were significant, resulting in SOC increments that were 5.03 times and 4.08 times higher than those of the Algae group (without clay). Notably, the two types of clay exhibited different advantages in SOC accumulation. Due to its larger external specific surface area and higher cation exchange capacity, MMT contributes more effectively to SOC stability. Specifically, the mineralization quotient (qM), hot-water extractable organic carbon (HWEOC), and molecular structural stability of SOC in the MMT group were 0.3, 0.34, and 1.31 times those of the Algae group, respectively. In contrast, kaolin was more favorable for microbial growth and SOC formation due to its higher dissolved organic carbon (DOC) content. Microbial biomass carbon (MBC), chlorophyll-a (Chl-a), photosynthetic performance index (PI<sub>ABS</sub>), and Shannon index in the kaolin group were 5.67, 2.44, 11.95, and 1.82 times those of the Algae group, respectively. These findings highlighted the synergistic effect for SOC accumulation of clay and cyanobacteria in artificial biocrust systems, clarified the specific roles of two typical clay minerals, and offered new insights for accelerating the restoration of nutrient-limited areas such as deserts.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"374 ","pages":"124110"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124110","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biocrusts are the primary organic carbon reservoirs in desert areas, in which inorganic clays potentially playing significant roles; however, the specific details of these roles remain largely unclear. In this study, typical 1:1 type (kaolin) and 2:1 type (montmorillonite, MMT) clay minerals were added to artificial biocrusts to investigate their effect on the acquisition performance of soil organic carbon (SOC). After 84 days of cultivation, the enhancement effects of kaolin and MMT were significant, resulting in SOC increments that were 5.03 times and 4.08 times higher than those of the Algae group (without clay). Notably, the two types of clay exhibited different advantages in SOC accumulation. Due to its larger external specific surface area and higher cation exchange capacity, MMT contributes more effectively to SOC stability. Specifically, the mineralization quotient (qM), hot-water extractable organic carbon (HWEOC), and molecular structural stability of SOC in the MMT group were 0.3, 0.34, and 1.31 times those of the Algae group, respectively. In contrast, kaolin was more favorable for microbial growth and SOC formation due to its higher dissolved organic carbon (DOC) content. Microbial biomass carbon (MBC), chlorophyll-a (Chl-a), photosynthetic performance index (PIABS), and Shannon index in the kaolin group were 5.67, 2.44, 11.95, and 1.82 times those of the Algae group, respectively. These findings highlighted the synergistic effect for SOC accumulation of clay and cyanobacteria in artificial biocrust systems, clarified the specific roles of two typical clay minerals, and offered new insights for accelerating the restoration of nutrient-limited areas such as deserts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘土和蓝藻对人工生物结皮土壤有机碳积累动态的协同效应
生物结壳是荒漠地区主要的有机碳储集层,其中无机粘土可能发挥重要作用;然而,这些角色的具体细节在很大程度上仍不清楚。在人工生物结皮中添加典型的1:1型(高岭土)和2:1型(蒙脱土)粘土矿物,研究其对土壤有机碳(SOC)获取性能的影响。培养84 d后,高岭土和MMT的强化效果显著,土壤有机碳增量分别比不添加粘土的藻类组高5.03倍和4.08倍。值得注意的是,两种类型的粘土在有机碳积累方面表现出不同的优势。由于其更大的外比表面积和更高的阳离子交换能力,MMT更有效地促进了SOC的稳定性。其中,MMT组的矿化商(qM)、热水可萃取有机碳(HWEOC)和有机碳分子结构稳定性分别是藻类组的0.3倍、0.34倍和1.31倍。而高岭土由于其较高的溶解有机碳(DOC)含量,更有利于微生物生长和有机碳的形成。高岭土组微生物生物量碳(MBC)、叶绿素a (Chl-a)、光合性能指数(PIABS)和Shannon指数分别是藻类组的5.67倍、2.44倍、11.95倍和1.82倍。这些发现突出了人工生物结壳系统中黏土矿物和蓝藻对有机碳积累的协同效应,明确了两种典型黏土矿物的具体作用,为加快沙漠等营养受限地区的恢复提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
Spatiotemporal evolution and driving forces of landscape structure and habitat quality in river corridors with ceased flow: A case study of the Yongding River corridor in Beijing, China. Sulfadiazine removal with low-cost structured nano and micro-composite hydrogel beads on moroccan clays with alginate-CMC-biochar. The impacts of alien species on river bioassessment. Understanding the impacts of ecological compensation policy on rural livelihoods: Insights from forest communities of China. Unveiling the effect of social networks on farmers' diversified energy-saving behaviors in the Tibetan plateau region of China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1