Methane, Ethane, and Propane Detection Using a Quartz-Enhanced Photoacoustic Sensor for Natural Gas Composition Analysis.

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS Energy & Fuels Pub Date : 2024-12-19 eCollection Date: 2025-01-09 DOI:10.1021/acs.energyfuels.4c03726
Aldo F P Cantatore, Giansergio Menduni, Andrea Zifarelli, Pietro Patimisco, Marilena Giglio, Miguel Gonzalez, Huseyin R Seren, Pan Luo, Vincenzo Spagnolo, Angelo Sampaolo
{"title":"Methane, Ethane, and Propane Detection Using a Quartz-Enhanced Photoacoustic Sensor for Natural Gas Composition Analysis.","authors":"Aldo F P Cantatore, Giansergio Menduni, Andrea Zifarelli, Pietro Patimisco, Marilena Giglio, Miguel Gonzalez, Huseyin R Seren, Pan Luo, Vincenzo Spagnolo, Angelo Sampaolo","doi":"10.1021/acs.energyfuels.4c03726","DOIUrl":null,"url":null,"abstract":"<p><p>A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively. With respect to previously reported QEPAS sensors for natural gas analysis, the high prediction accuracy as well as the capability to discriminate and detect C3 within natural gas-like complex mixtures provided by the employment of partial least-squares regression mark significant improvements. Furthermore, these results enable an improved performance of the sensor for in situ, real-time, and online natural gas composition analysis.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 1","pages":"638-646"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.energyfuels.4c03726","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively. With respect to previously reported QEPAS sensors for natural gas analysis, the high prediction accuracy as well as the capability to discriminate and detect C3 within natural gas-like complex mixtures provided by the employment of partial least-squares regression mark significant improvements. Furthermore, these results enable an improved performance of the sensor for in situ, real-time, and online natural gas composition analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用石英增强光声传感器进行天然气成分分析的甲烷,乙烷和丙烷检测。
报道了一种基于石英增强光声光谱(QEPAS)的小型便携式气体传感器,用于检测天然气(NG)类混合物中的甲烷(C1)、乙烷(C2)和丙烷(C3)。利用发射波长为3367 nm的带间级联激光器(ICL)测量三种烷烃的吸收特征,并利用偏最小二乘回归分析滤除光谱干扰和表征气体混合物的矩阵效应。使用稀释在氮气中的甲烷、乙烷和丙烷混合物的光谱来训练和测试回归算法,在C1、C2和C3上分别实现了~ 98%、~ 96%和~ 93%的预测精度。与之前报道的用于天然气分析的QEPAS传感器相比,采用偏最小二乘回归提供的高预测精度以及在类天然气复杂混合物中区分和检测C3的能力显着提高。此外,这些结果提高了传感器的性能,可以进行现场、实时和在线的天然气成分分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
期刊最新文献
Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures. Issue Editorial Masthead Issue Publication Information A Comprehensive Assessment of the Marginal Abatement Costs of CO2 of Co-Optima Multi-Mode Vehicles. Methane, Ethane, and Propane Detection Using a Quartz-Enhanced Photoacoustic Sensor for Natural Gas Composition Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1