A gene-encoded bioprotein second harmonic generation (SHG) probe from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin for live cell imaging.

IF 2.2 4区 生物学 Q3 BIOPHYSICS European Biophysics Journal Pub Date : 2025-01-15 DOI:10.1007/s00249-024-01728-6
Xiaoyuan Deng, Hao Liu, Heting Chen, Zuojun Yang, Yuhan Wu, Li He, Wenjing Guo
{"title":"A gene-encoded bioprotein second harmonic generation (SHG) probe from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin for live cell imaging.","authors":"Xiaoyuan Deng, Hao Liu, Heting Chen, Zuojun Yang, Yuhan Wu, Li He, Wenjing Guo","doi":"10.1007/s00249-024-01728-6","DOIUrl":null,"url":null,"abstract":"<p><p>Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin. The primitive gene of AcMNPV polyhedrin was codon-optimized and mutated in its nuclear localization sequence to achieve cytoplasmic expression in mammalian cells. While providing strong SHG signals, this gene-modified AcMNPV (GM-AcMNPV) polyhedrin could be utilized as an SHG probe for cell imaging. Our experimental results demonstrated successful expression of GM-AcMNPV polyhedrin in the cytoplasm of HEK293T cells and bone mesenchymal stem cells (BMSCs), and verified its characteristic features as an SHG probe. Such SHG probes exhibit high biocompatibility and showed no hindering of central physiological activities such as the differentiation of stem cells. Most importantly, our SHG probes may be successfully used for imaging in living cells. This work will inspire the development of gene encoding-derived bioprotein SHG probes, for long-term tracing of cells/stem cells along with their division, to understand stem cell cycles, reveal stem cell-based therapy mechanisms in regenerative medicine, and unravel cell lineage origins and fates in developmental biology, among other potential applications.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-024-01728-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin. The primitive gene of AcMNPV polyhedrin was codon-optimized and mutated in its nuclear localization sequence to achieve cytoplasmic expression in mammalian cells. While providing strong SHG signals, this gene-modified AcMNPV (GM-AcMNPV) polyhedrin could be utilized as an SHG probe for cell imaging. Our experimental results demonstrated successful expression of GM-AcMNPV polyhedrin in the cytoplasm of HEK293T cells and bone mesenchymal stem cells (BMSCs), and verified its characteristic features as an SHG probe. Such SHG probes exhibit high biocompatibility and showed no hindering of central physiological activities such as the differentiation of stem cells. Most importantly, our SHG probes may be successfully used for imaging in living cells. This work will inspire the development of gene encoding-derived bioprotein SHG probes, for long-term tracing of cells/stem cells along with their division, to understand stem cell cycles, reveal stem cell-based therapy mechanisms in regenerative medicine, and unravel cell lineage origins and fates in developmental biology, among other potential applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
期刊最新文献
A gene-encoded bioprotein second harmonic generation (SHG) probe from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin for live cell imaging. EBSA at 40 - an updated history. Rational design of potent phosphopeptide binders to endocrine Snk PBD domain by integrating machine learning optimization, molecular dynamics simulation, binding energetics rescoring, and in vitro affinity assay. Exploring characteristic features for effective HCN1 channel inhibition using integrated analytical approaches: 3D QSAR, molecular docking, homology modelling, ADME and molecular dynamics Quantitative characterization of non-specific interaction of two globular proteins with Dextran T70 in a binary mixture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1