Failed stopping transiently suppresses the electromyogram in task-irrelevant muscles.

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2025-01-14 DOI:10.1523/ENEURO.0166-24.2025
Isaiah Mills, Mitchell Fisher, Corey George Wadsley, Ian Greenhouse
{"title":"Failed stopping transiently suppresses the electromyogram in task-irrelevant muscles.","authors":"Isaiah Mills, Mitchell Fisher, Corey George Wadsley, Ian Greenhouse","doi":"10.1523/ENEURO.0166-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited. Canceling one action can delay the execution of other simultaneous actions. This stopping-interference effect on continuing actions during selective stopping may be attributed to a global inhibitory mechanism with widespread effects on the motor system. Previous studies have characterized a transient global reduction in corticomotor excitability by combining brain stimulation with electromyography (EMG). Here, we examined whether global motor inhibition during selective stopping can be measured peripherally and with high temporal resolution using EMG alone. Eighteen participants performed a bimanual anticipatory response inhibition task with their index fingers while maintaining a tonic contraction of the task-irrelevant abductor digiti minimi (ADM) muscles. A time series analysis of the ADM EMG signal revealed transient inhibition during failed stopping compared to go response trials 150 ms to 203 ms following the stop signal. The pattern was observed in both hands during bimanual stop-all trials as well as selective stop-left and stop-right trials of either hand. These results indicate that tonic muscle activity is sensitive to the effects of global motor suppression even when stopping fails. Therefore, EMG can provide a physiological marker of global motor inhibition to probe the time course and extent of stopping processes.<b>Significance Statement</b> The ability to stop ongoing actions is disrupted in a variety of brain disorders, and failing to stop can have dire consequences for personal safety. Successfully stopping an initiated response has a widespread inhibitory effect on motor system excitability. By measuring activity in task-irrelevant muscles during the performance of a stop task we unveiled a novel signature of transient motor system inhibition when stopping fails. The pattern was observed during attempts to selectively and non-selectively stop actions. This temporally precise signature of peripheral inhibition may be leveraged to better examine candidate neural mechanisms, and our non-invasive approach is well-suited for tracking inhibitory control deficits in clinical populations.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0166-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited. Canceling one action can delay the execution of other simultaneous actions. This stopping-interference effect on continuing actions during selective stopping may be attributed to a global inhibitory mechanism with widespread effects on the motor system. Previous studies have characterized a transient global reduction in corticomotor excitability by combining brain stimulation with electromyography (EMG). Here, we examined whether global motor inhibition during selective stopping can be measured peripherally and with high temporal resolution using EMG alone. Eighteen participants performed a bimanual anticipatory response inhibition task with their index fingers while maintaining a tonic contraction of the task-irrelevant abductor digiti minimi (ADM) muscles. A time series analysis of the ADM EMG signal revealed transient inhibition during failed stopping compared to go response trials 150 ms to 203 ms following the stop signal. The pattern was observed in both hands during bimanual stop-all trials as well as selective stop-left and stop-right trials of either hand. These results indicate that tonic muscle activity is sensitive to the effects of global motor suppression even when stopping fails. Therefore, EMG can provide a physiological marker of global motor inhibition to probe the time course and extent of stopping processes.Significance Statement The ability to stop ongoing actions is disrupted in a variety of brain disorders, and failing to stop can have dire consequences for personal safety. Successfully stopping an initiated response has a widespread inhibitory effect on motor system excitability. By measuring activity in task-irrelevant muscles during the performance of a stop task we unveiled a novel signature of transient motor system inhibition when stopping fails. The pattern was observed during attempts to selectively and non-selectively stop actions. This temporally precise signature of peripheral inhibition may be leveraged to better examine candidate neural mechanisms, and our non-invasive approach is well-suited for tracking inhibitory control deficits in clinical populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Failed stopping transiently suppresses the electromyogram in task-irrelevant muscles. Sex-specific contrasting role of BECLIN-1 protein in pain hypersensitivity and anxiety-like behaviors. Ventral pallidal GABAergic neurons drive consumption in male, but not female rats. Cortical HFS-induced neo-Hebbian local plasticity enhances efferent output signal and strengthens afferent input connectivity. Cross-validating the electrophysiological markers of early face categorization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1