Xiao Li, Xue Wang, Xiaohan Hu, Peng Tang, Congping Chen, Ling He, Mengying Chen, Stephen Temitayo Bello, Tao Chen, Xiaoyu Wang, Yin Ting Wong, Wenjian Sun, Xi Chen, Jianan Qu, Jufang He
{"title":"Cortical HFS-Induced Neo-Hebbian Local Plasticity Enhances Efferent Output Signal and Strengthens Afferent Input Connectivity.","authors":"Xiao Li, Xue Wang, Xiaohan Hu, Peng Tang, Congping Chen, Ling He, Mengying Chen, Stephen Temitayo Bello, Tao Chen, Xiaoyu Wang, Yin Ting Wong, Wenjian Sun, Xi Chen, Jianan Qu, Jufang He","doi":"10.1523/ENEURO.0045-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>High-frequency stimulation (HFS)-induced long-term potentiation (LTP) is generally regarded as a homosynaptic Hebbian-type LTP, where synaptic changes are thought to occur at the synapses that project from the stimulation site and terminate onto the neurons at the recording site. In this study, we first investigated HFS-induced LTP on urethane-anesthetized rats and found that cortical HFS enhances neural responses at the recording site through the strengthening of local connectivity with nearby neurons at the stimulation site rather than through synaptic strengthening at the recording site. This enhanced local connectivity at the stimulation site leads to increased output propagation, resulting in signal potentiation at the recording site. Additionally, we discovered that HFS can also nonspecifically strengthen distant afferent synapses at the HFS site, thereby expanding its impact beyond local neural connections. This form of plasticity exhibits a neo-Hebbian characteristic as it exclusively manifests in the presence of cholecystokinin release, induced by HFS. The cortical HFS-induced local LTP was further supported by a behavioral task, providing additional evidence. Our results unveil a previously overlooked mechanism underlying cortical plasticity: synaptic plasticity is more likely to occur around the soma site of strongly activated cortical neurons rather than solely at their projection terminals.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810566/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0045-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High-frequency stimulation (HFS)-induced long-term potentiation (LTP) is generally regarded as a homosynaptic Hebbian-type LTP, where synaptic changes are thought to occur at the synapses that project from the stimulation site and terminate onto the neurons at the recording site. In this study, we first investigated HFS-induced LTP on urethane-anesthetized rats and found that cortical HFS enhances neural responses at the recording site through the strengthening of local connectivity with nearby neurons at the stimulation site rather than through synaptic strengthening at the recording site. This enhanced local connectivity at the stimulation site leads to increased output propagation, resulting in signal potentiation at the recording site. Additionally, we discovered that HFS can also nonspecifically strengthen distant afferent synapses at the HFS site, thereby expanding its impact beyond local neural connections. This form of plasticity exhibits a neo-Hebbian characteristic as it exclusively manifests in the presence of cholecystokinin release, induced by HFS. The cortical HFS-induced local LTP was further supported by a behavioral task, providing additional evidence. Our results unveil a previously overlooked mechanism underlying cortical plasticity: synaptic plasticity is more likely to occur around the soma site of strongly activated cortical neurons rather than solely at their projection terminals.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.