Mansour Taleshi, Franziska Bubeck, Pascal Brunner, Leonardo Gizzi, Ivan Vujaklija
{"title":"Observing changes in motoneuron characteristics following distorted sensorimotor input via blood flow restriction.","authors":"Mansour Taleshi, Franziska Bubeck, Pascal Brunner, Leonardo Gizzi, Ivan Vujaklija","doi":"10.1152/japplphysiol.00603.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Disruption of the blood supply to a limb in conjunction with active movement boosts muscle growth, aids in rehabilitation, and allows controlled exploration of the sensorimotor system. Yet, the underlying neuromechanical changes have not been observed in great detail. This study aims to report the acute neuromuscular effects of temporary blood flow restriction (BFR) through behavioral changes at the level of motor units (MUs) using high-density surface electromyography on the abductor digiti minimi muscle during 20 trapezoidal and sinusoidal isometric force tracking tasks (5 pre-BFR, 5 during BFR, and 10 post-BFR). Unsurprisingly, during BFR, reported discomfort levels increased significantly (ρ < 0.001) regardless of the task (+239% trapezoidal, +228% sinusoidal). However, BFR had very little impact on task tracking performance, though the reconstructed force derived from the underlying neural drive (smoothed cumulative spike train of MUs) deviated substantially during BFR (-40% in trapezoidal, -47% in sinusoidal). Regardless of the condition, the numbers of extracted MUs were consistent (20-26 in trapezoidal, 23-29 in sinusoidal). Interestingly, the interspike interval (ISI) of these units increased by 28% in trapezoidal and 24% in sinusoidal tasks during BFR, with ISI steadily returning to original values post-BFR. These results indicate that acute BFR transiently alters the active MU pool, and MU firing behavior, yet only slightly affects the resulting task performance. However, pre-BFR motor function is gradually restored after BFR release. These findings provide insights into the resulting effects of acute BFR administration and the complex response it elicits from the sensorimotor system.<b>NEW & NOTEWORTHY</b> To improve our understanding of how acute blood flow restriction (BFR) intervention affects neuromechanical function and motor unit characteristics, we applied high-density surface electromyography on the abductor digiti minimi muscle during isometric trapezoidal and sinusoidal precision force tracking tasks. Although BFR increased discomfort, it minimally affected force tracking performance; however, it did alter the underlying motor unit behavior. These findings further enhance our understanding of the neural mechanisms underlying BFR.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":"559-570"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00603.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Disruption of the blood supply to a limb in conjunction with active movement boosts muscle growth, aids in rehabilitation, and allows controlled exploration of the sensorimotor system. Yet, the underlying neuromechanical changes have not been observed in great detail. This study aims to report the acute neuromuscular effects of temporary blood flow restriction (BFR) through behavioral changes at the level of motor units (MUs) using high-density surface electromyography on the abductor digiti minimi muscle during 20 trapezoidal and sinusoidal isometric force tracking tasks (5 pre-BFR, 5 during BFR, and 10 post-BFR). Unsurprisingly, during BFR, reported discomfort levels increased significantly (ρ < 0.001) regardless of the task (+239% trapezoidal, +228% sinusoidal). However, BFR had very little impact on task tracking performance, though the reconstructed force derived from the underlying neural drive (smoothed cumulative spike train of MUs) deviated substantially during BFR (-40% in trapezoidal, -47% in sinusoidal). Regardless of the condition, the numbers of extracted MUs were consistent (20-26 in trapezoidal, 23-29 in sinusoidal). Interestingly, the interspike interval (ISI) of these units increased by 28% in trapezoidal and 24% in sinusoidal tasks during BFR, with ISI steadily returning to original values post-BFR. These results indicate that acute BFR transiently alters the active MU pool, and MU firing behavior, yet only slightly affects the resulting task performance. However, pre-BFR motor function is gradually restored after BFR release. These findings provide insights into the resulting effects of acute BFR administration and the complex response it elicits from the sensorimotor system.NEW & NOTEWORTHY To improve our understanding of how acute blood flow restriction (BFR) intervention affects neuromechanical function and motor unit characteristics, we applied high-density surface electromyography on the abductor digiti minimi muscle during isometric trapezoidal and sinusoidal precision force tracking tasks. Although BFR increased discomfort, it minimally affected force tracking performance; however, it did alter the underlying motor unit behavior. These findings further enhance our understanding of the neural mechanisms underlying BFR.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.