{"title":"Leg stiffness adjustment during hopping by dynamic interaction between the muscle and tendon of the medial gastrocnemius.","authors":"Kazuki Kuriyama, Daisuke Takeshita","doi":"10.1152/japplphysiol.00375.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The biomechanics underlying bouncing exercises are characterized by the spring-like behavior of the human leg. This study investigated a specific form of hopping-performed with an extended knee and minimal ground contact duration-to examine how muscle dynamics contribute to leg stiffness adjustment. This constrained hopping pattern allows us to isolate the role of ankle joint, especially plantarflexor muscle-tendon complex (MTC). To quantitatively analyze changes in the MTC of the medial gastrocnemius muscle (MG), we utilized an MTC model comprising an active spring and a passive spring connected in series, representing a contractile component (CC) and series elastic component (SEC), respectively. We hypothesized that an increase in CC stiffness would coincide with the increase in leg stiffness, thereby enabling hopping at higher frequencies. Joints and MG fascicle dynamics were collected across different hop frequencies. The results showed that the stiffness of the MTC increased with hop frequency and exhibited a strong correlation with the leg stiffness. In addition, with increasing frequency, the fascicle contractions shifted from isometric to concentric. Consequently, a negative CC stiffness was observed, thereby increasing the overall MTC stiffness. Although this result appears to diverge from our initial hypothesis, the effect of negative CC stiffness on MTC stiffness can be understood, from the perspective of two springs in series, as an extension of the very high stiffness effect. This quantitative understanding of the dynamic interaction between the fascicle and tendon provides deeper insight into the adjustment mechanisms underlying bouncing gaits.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00375.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The biomechanics underlying bouncing exercises are characterized by the spring-like behavior of the human leg. This study investigated a specific form of hopping-performed with an extended knee and minimal ground contact duration-to examine how muscle dynamics contribute to leg stiffness adjustment. This constrained hopping pattern allows us to isolate the role of ankle joint, especially plantarflexor muscle-tendon complex (MTC). To quantitatively analyze changes in the MTC of the medial gastrocnemius muscle (MG), we utilized an MTC model comprising an active spring and a passive spring connected in series, representing a contractile component (CC) and series elastic component (SEC), respectively. We hypothesized that an increase in CC stiffness would coincide with the increase in leg stiffness, thereby enabling hopping at higher frequencies. Joints and MG fascicle dynamics were collected across different hop frequencies. The results showed that the stiffness of the MTC increased with hop frequency and exhibited a strong correlation with the leg stiffness. In addition, with increasing frequency, the fascicle contractions shifted from isometric to concentric. Consequently, a negative CC stiffness was observed, thereby increasing the overall MTC stiffness. Although this result appears to diverge from our initial hypothesis, the effect of negative CC stiffness on MTC stiffness can be understood, from the perspective of two springs in series, as an extension of the very high stiffness effect. This quantitative understanding of the dynamic interaction between the fascicle and tendon provides deeper insight into the adjustment mechanisms underlying bouncing gaits.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.