Gabriela Simões de Oliveira, Silvia Adriana Mayer Lentz, Camila Zanfelice Müller, Rafaela Ramalho Guerra, Tanise Vendruscolo Dalmolin, Fabiana Caroline Zempulski Volpato, Daiana de Lima-Morales, Priscila Lamb Wink, Afonso Luís Barth, Peter Rabinowitz, Andreza Francisco Martins
{"title":"Resistome and plasmidome genomic features of mcr-1.1-harboring Escherichia coli: a One Health approach.","authors":"Gabriela Simões de Oliveira, Silvia Adriana Mayer Lentz, Camila Zanfelice Müller, Rafaela Ramalho Guerra, Tanise Vendruscolo Dalmolin, Fabiana Caroline Zempulski Volpato, Daiana de Lima-Morales, Priscila Lamb Wink, Afonso Luís Barth, Peter Rabinowitz, Andreza Francisco Martins","doi":"10.1093/jambio/lxaf019","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study evaluated the phenotypic and genotypic traits of mcr-1.1-harboring Escherichia coli isolates from chickens, pigs, humans, and farm environments. The resistome and the mobile genetic elements associated with the spread of mcr-1.1 in Southern Brazil were also characterized.</p><p><strong>Methods and results: </strong>The 22 mcr-1.1-harboring E. coli isolates from different origins were selected for antimicrobial susceptibility testing and whole genome sequencing for characterization of the resistome, plasmids, and sequence types. All isolates presented several resistance genes and harbored the mcr-1.1 gene in a highly similar IncX4 plasmid. Furthermore, the mcr-1.1 gene co-occurred with the mcr-3.12 gene in a multidrug-resistant isolate from the farm environment.</p><p><strong>Conclusions: </strong>These findings demonstrate that the mcr-1.1 gene in E. coli isolates from Brazil is spreading mainly by horizontal transfer of the IncX4 plasmid. The co-occurrence of mcr-1.1 and mcr-3.12 highlights pig farming as an important reservoir of colistin resistance.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: This study evaluated the phenotypic and genotypic traits of mcr-1.1-harboring Escherichia coli isolates from chickens, pigs, humans, and farm environments. The resistome and the mobile genetic elements associated with the spread of mcr-1.1 in Southern Brazil were also characterized.
Methods and results: The 22 mcr-1.1-harboring E. coli isolates from different origins were selected for antimicrobial susceptibility testing and whole genome sequencing for characterization of the resistome, plasmids, and sequence types. All isolates presented several resistance genes and harbored the mcr-1.1 gene in a highly similar IncX4 plasmid. Furthermore, the mcr-1.1 gene co-occurred with the mcr-3.12 gene in a multidrug-resistant isolate from the farm environment.
Conclusions: These findings demonstrate that the mcr-1.1 gene in E. coli isolates from Brazil is spreading mainly by horizontal transfer of the IncX4 plasmid. The co-occurrence of mcr-1.1 and mcr-3.12 highlights pig farming as an important reservoir of colistin resistance.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.